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Abstract

This dissertation addresses the problem of estimating a

vector-valued stochastic process R from observations of a

space-time point process which is dependent on x . The

observations are corrupted by statistically independent,

additive point process noise. The research is motivated by

a neutral particle beam estimation and control problem in

which it is desired to estimate the position of the beam

from detected photo-electron events. Dark current in the

detector and other photon sources comprise the noise

sources.

A multiple model adaptive estimator is developed in

which the separate models are hypothesis sequences. The

hypotheses define which observed events were due to the

signal process and which were due to the noise process. The

estimator provides the minimum mean squared error estimate

of the underlying process. The problem is modeled on a

cross product of probability spaces, and regularity

conditions are defined which allow calculation of the

weighting factors for the multiple model estimator. This

modeling concept allows feedback from the observed events to

the model, thus providing a means for control of the

xii



process. The multiple model adaptive estimator and the

cross product modeling concepts are valid for a general

point process signal in point process noise as long as the

regularity conditions are met. The number of elemental

filters in the estimator doubles as each new point process

event is observed.

For the particle beam application, the elemental

filters are Snyder-Fishman "firefly" filters, in which the

signal process is assumed Poisson conditioned on the

underlying process.

Simplifications to the full scale estimator are

proposed which result in a fixed number of elemental

filters. This is accomplished by considering only data

( within a fixed window. The data windowing is applicable to

the general point process estimation problem.

Simplifications which reduce the complexity of the multipie

model weighting factor calculations are developed for the

particle beam application. The simplifications result in a

suboptimal estimator.

Monte Carlo simulations of the suboptimal estimator

demonstrate that it is extremely successful at rejecting

point process noise events in the measurement history, even

at signal to noise count ratios as low as 0.1 and very low

data rates.
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MULTIPLE MODEL ADAPTIVE ESTIMATION

FOR SPACE-TIME POINT PROCESS OBSERVATIONS

I. Introduction

I.1 The Problem

The problem addressed by this research is one of

estimating parameters of an underlying stochastic process

from observations of a point process where the point process

is dependent on the underlying process and the observations

are corrupted by point process noise. A second, closely

related problem is that of allowing feedback control for a

system in which observations of a point process signal are

corrupted by point process noise. This will provide a

method for investigating the optimal stochastic adaptive

controller for the system.

The major contribution of this research is a method for

developing an estimator for the above mentioned point

process signal in point process noise environment. The

method allows feedback to the model from the observations

thus providing a means for control. This method is used to

develop the estimator for the neutral particle beam pointing

and tracking problem which motivated this research.



.... .. . . " .

I.I.1 Problem Motivation. This research is motivated

in part by problems in neutral particle beam pointing and

tracking currently being investigated at the Ballistic

Missile Defense Advanced Technology Center, Huntsville,

Alabama and the Air Force Weapons Laboratory, Kirtland AFB,

New Mexico. Their goal is not only to estimate the position

and direction of the beam, but to use that information in an

optimal way to control the pointing of the beam.

A method for sensing the location of the neutral

particle beam has been proposed in which the beam is

illuminated by one or more lasers. At certain angles of

intersection and particle velocities, the particle electrons

absorb photons from the laser beam and attain a higher

energy state. The electrons spontaneously decay to their

ground energy states and radiate photons in an approximately

isotropic manner. By detecting this resonant scattered

light energy, the position of the beam can be inferred.

The signals resulting from detection of optical fields

can be modeled by conditional Poisson (CP) random processes

(Refs. 25,28,33,46). The statistics are conditioned on the

rate parameter of the Poisson process, which is proportional

to the intensity of the received optical envelope. Real

optical detectors typically have a noise mechanism which is

independent of the signal and can be modeled by another

conditional Poisson process. There is a non-zero

2



probability that electrons will be emitted from a

photodetector even in the absence of incident photons. The

resulting current is called dark current. In general, there

will also be noise induced by background light sources in

the field of view of the detector. If statistical

independence is assumed between the three processes, the

resulting process is also CP with a rate parameter which is

the sum of the three individual rate parameters. This is

shown in Chapter II.

The conditional Poisson process model is required when

the level of the received signal is so low that individual

photo-electron events must be counted. At higher signal

rates, the observed current might be adequately modeled by a

Gaussian process as is done in many communication and

control type problems. Only the point process signal in

point process noise case is considered in this research.

The problem then is to estimate the position of the

neutral particle beam from observations of a conditional

Poisson process. The observed CP process is composed of the

signal (scattered resonant photons from the illuminated

electrons) and noise sources. An associated problem to be

considered subsequently is control of the pointing of the

beam.

The observations considered here are of a space-time

point process which, conditioned on the rate parameter, is

Poisson. The rate parameter itself is a stochastic

3
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process and we desire to estimate some function of the rate

parameter. In this dissertation, the term space-time point

process is used to denote a vector valued random process

which is a mapping from the cross product of a time interval

and a probability space into [t0 ,T) X Rm (time cross

real Euclidean m space). Each observation is of the form

(ti,ri) where ti is the time of occurrence for the Ith

observation and 7. is the location in real Euclidean m

spac. for the ith observation.

The observed conditionally Poisson (CP) space-time

process is composed of a CP process of interest (the signal)

plus a CP noise process. The noise and signal processes are

assumed to be statistically independent, resulting in the

observed CP process.

A second sensing mechanism which may be exploitable for

pointing and tracking in the neutral particle beam project

is induced gamma radiation. When the beam strikes a target,

gamma radiation is produced. This can be observed by an

estimator/controller and used to direct the beam. When the

signal rates are low so that point process statistics must

be used to model the system adequately, the results of this

research can be used for estimation and control.

Other possible applications for these techniques

include tracking of missiles or satellites where the

observed signal rate is low, necessitating the use of point

4
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process models. The results presented here are not

dependent on active illumination of the target so a passive

tracking system with low observed signal rates could also

fit the model.

1.1.2 Key Concepts. The key concepts in this research

are:

1. A space-time point process signal is observed in

.1 space-time point process noise.

2. We are interested in estimating some vector which

parameterizes the signal process.

3. We want to allow feedback from the observations in

the model in order to provide a means of control.

-~ For the neutral particle beam problem:

4. Both the signal and noise processes are modeled as

Poisson processes, conditioned on knowledge of the

respective (perhaps random) rate parameters.

5. The signal and noise processes are assumed

statistically independent.
I

1.2 Background Literature

The literature applicable to this research can be

divided into several overlapping categories. Each category

addresses a portion of the beam estimation and control

problem. The categories are: Poisson process estimation,

5
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jump processes, space-time point process estimation and

control, and multiple model adaptive estimation and control

methods.

1.2.1 Poisson Process Estimation. References 13,25,

33,34, and 46 contain several examples of estimation for

processes modeled by Poisson statistics. Snyder (Ref. 46),

in particular, provides the requirements for modeling a

point process with Poisson statistics and presentF many

useful probability densities and distributions for Poisson

processes.

Most of the examples in these references are oriented

towards communication type problems. In these examples, a

time sequence of point events is observed and the rate

parameter of the process is estimated. A second similar

problem is that of estimating the presence of an on-off

keyed signal in noise. These communication problems

typically do not include any spatial observations of the

process; however, the forms of the probability densities

are analogous to those developed in this research for space-

time Poisson process.

1.2.2 Jump Processes. One method of including the

spatial nature of the observed process is to model it as a

jump process (Refs. 8,41,42,49,50). In general, a jump

process is one in which point events occur randomly in time

and there is a value or weight associated with each observed

6



event. An example of a system which might be modeled by a

jump process is urban vehicle traffic in which sensors

measure time of arrival and the jump value might be speed or

direction. For the problem at hand, we might model the

system as a jump process in which the value (or weight) of

the jump is the m dimensional spatial location of the

observation. Vaca and Tretter (Ref. 49) discuss optimal

estimation for the traffic example but no noise sources are

considered.

Segall and Kailath (Ref. 42) consider modeling of

randomly modulated jump processes. This model addresses our

goal of inferring information about the observed signal

point process; however, they approach noise as either an

Iadditive white Gaussian source or as an additive point

source in a binary detection type of problem. Jump

process models address some portions of our point process

signal in point process noise problem, but the model does

not fit all aspects and jump processes are not considered

further in this research.

1.2.3 Space-Time Point Processes. The modeling of a

system as a space-time point process (Refs.

11,12,35,38,45,46,47) is very applicable to this problem.

In particular, the basic definitions and tools for

statistical inference for space-time point processes are

developed in Fishman (Ref. 11) and Fishman and Snyder (Ref.

12). Each observation of a space-time point process

7



consists of a time of event occurrence and a spatial

coordinate of the event. In this research, the spatial

coordinate is an element of real Euclidean m space and the

Ith measurement consists of the pair

(ti,Ti)c[t ,T) X Rm

where

t. is the time of occurrence1

ri is the spatial vector of the event

[to,T) is the time interval of the observations

Rm is real Euclidean m space.

If we let Nt  be the number of observed point process

events in the interval [to,T) , then the measurement

history can be defined as

Nt A -z" = {(t," , ... ttr N t

Snyder and Fishman (Ref. 47) present a conceptually

pleasing motivation for this model and develop the

associated estimator for the case when no noise is present

in the observations., They pose the problem as one of

tracking the centroid of a swarm of fireflies. The swarm is

assumed to have a Gaussian shaped density in real Euclidean

8
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m space and its centroid is assumed to move in real

Euclidean m space as a linear function of the output of a

linear n dimensional dynamical system driven by a standard

Wiener process. The n dimensional. output is Markov-1, but

the motion of the centroid is not necessarily Markov-1. The

observer is allowed to view the flashes of the fireflies and

the measurements consist of the flash occurrence times and

locations in m space. Given the centroid of the Gaussian

shaped swarm, the flashes are assumed to occur as a Poisson

process and the Gaussian shaped swarm corresponds to the

rate parameter of the space-time conditionally Poisson

process. They show that the estimate of the centroid is

Gaussian and the structure of the estimator is analogous to

q4 a Kalman filter. There are propagation and update phases of

the estimator and there is a residual term in the estimator

structure similar to that of the Kalman filter. The updates

occur at the event times rather than at some a priori chosen

sample times. Although this model and estimator included no

noise sources, it forms a basis for this research.

Snyder, Rhodes, and Hoversten (Ref. 48) extended the

usefulness of this model and estimator with the

demonstration of a separation theorem. They showed that,

for the "firefly" tracking problem, the optimum stochastic

controller is decomposable into an independently designed

estimator and the linear deterministic optimal controller.

The estimator is the Snyder and Fishman filter (Ref. 47) and

9



the linear control law is the deterministic result obtained

if the output of the n dimensional dynamical system were

known exactly.

This result is important since the goal of virtually

any estimator used for tracking is to control some system to

maintain track. The separation theorem provides the

synthesis method for attaining this control. Secondly, the

separation theorem provides a simple form for the optimal

controller and can provide insight into a possible

separation theorem for the case of point process signal
'I

observed in point process noise. If a separation theorem is

not possible, this result may still provide iis'.ht for

using forced certainty equivalence (Ref. 27 vol. 111:17) to

generate a controller.

Santiago (Ref. 38) investigated limitations of optical

trackers, including the effects of noise on the "firefly"

estimator. He performed simulations on the estimator both

with and without unmodeled point process noise corruption of

the data. As might be expected, the estimator's performance

degraded significantly when the noise was present, since the

noise was unmodeled. Santiago developed some ad hoc methods

to reduce the influence of the noise. One method, motivated

by residual monitoring techniques in Kalman filter

applications, was to ignore measurements which resulted in a

residual magnitude above some predetermined threshold.

Simulations showed a significant improvement in the

10
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estimator's performance with these methods of dealing with

the noise, and his results suggest that a proper theoretical

development of an estimator with modeled noise could be

successful. Some form of disregarding or deweighting of

events suspected of being caused by noise might be a useful

course of action in developing an estimator for this signal-

qin-noise environment.

1.2.4 Decision Theory and Multiple Model Estimators.

The two topics included in this literature category concern

* methods for disregarding or deweighting measurements which

contain little or no information about the process of

interest. Investigation of these topics is motivated by the

( results of Santiago.

Binary decision theory methods are presented by

references 4,20,21,22,39, and 44. Lainiotis (Refs.

20,21,22) discusses algorithms for adaptive estimation of

both the system's structure and parameters via decisions on

a binary hypothesis model as each measurement is taken.

Athans, Whiting, and Gruber (Ref. 4) discuss the general

binary hypothesis decision theory for estimators, two

methods of incorporating the weighted data, and a specific

linear Gaussian model example.

In all six of these decision theory papers, Bayesian

statistics, a priori knowledge of the hypotheses, and the

measurement history are used to evaluate the validity of the

most recent measurement. Emphasis is placed on

! ii
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!L . incorporating or rejecting the latest measurement when

received and then considering it no further (except for the

implicit effect each measurement has on the estimate at

subsequent time). The goal is to obtain a recursive

algorithm for incorporation of the most recent measurement

in order to minimize memory and calculation requirements.

This differs from the concept of multiple model

adaptive estimation (MMAE) and multiple model adaptive

control (MMAC) as presented in references 2,3,5,9,19,26,27

vols. II and 111,31,43,51, and 52. In MMAE, separate model
I

estimators are maintained throughout the observation time

interval. Magill (Ref. 26) and Athans and Chang (Ref. 2)

describe the basic MMAE method. As in most of the MMAE/MMAC

papers cited, the problems under study are modeled by linear

systems driven by Gaussian noises and the separate models

are chosen by selection of different parameter matrices for

the model. This selection of models can be made either by

knowledge that only a finite number of models can exist, or

more commonly by discretization of the range of the

parameter values. A set of estimators ("bank of filters"

which are Kalman filters in the linear Gaussian model case)

is designed, one matched to each distinct model. The

estimates from each filter are weighted and summed to obtain

the overall estimate. The weights are determined using

Bayesian statistics and any a priori statistical knowledge

12



of the models in a manner similar to the binary decision

theory estimators.

Stability and convergence of MMAE/MMAC algorithms are

discussed in references 6,14,15,16,17, and 29. Baram (Ref.

6) presents consistency and convergence results for a large

class of maximum a posteriori (MAP), maximum likelihood

(ML), least squares (LS), and Bayesian estimators through

the use of information metrics. Hawkes and Moore (Ref. 15)

use similar methods to show that for a IMA estimator with a

finite number of models, the weighting coefficient converges

* almost surely to one for the model closest to the true

parameter.

1.3 Research Approach

The approach taken in this research is to develop an

estimator for the space-time point process signal plus noise

system using multiple model adaptive estimation techniques.

For the particle beam application, Snyder and Fishman

"firefly" filters are used for the individual filters in the

"bank" (Ref. 47). Each assumed model (or hypothesis) is aA

distinct sequence specifying which observed events are noise

and which observed events are signal. Once a model is

specified by the hypothesis, only those measurements assumed

caused by the signal process are considered by the

individual filter. The overall estimate is a weighted sum

of the individual filters' estimates as in the linear

13
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Gaussian MMAE examples. The estimator is developed.to admit

( feedback from the observations to the model. This will

allow for definition of an optimal controller for the

system. A covariance expression for the estimator is

developed and methods for reducing the computational

complexity are investigated.

1.4 Summary of Remaining Chapters

In Chapter II, the detailed signal-in-noise model for

the system is defined and conditions for using Poisson

statistics are specified. A brief description of MMAE is
4

presented and the structure of the MMAE for this point

process problem is developed. Weighting coefficients are

developed using a probability density approach. The

expressions for the coefficients are very difficult to

compute, thus motivating the cross product space modeling

concepts presented in Chapter III.

In Chapter III, a description of some of Fishman's

statistical inference results for doubly stochastic space-

time point processes is given, including a regularity

definition and the implications of regularity in a point

process. The beam problem is cast as a doubly stochastic

space-time point process and an analytic cross product space

model is developed for the problem. A regularity proof is

given for this model.

In Chapter IV, the cross product space model is used to

14



develop the weighting factors for the multiple model
. adaptive estimator. The complete equations for the MMA

estimator for the beam problem are presented and some

example cases are presented.

The full scale estimator requires an exponentially

growing amount of calculation and memory. Methods to

simplify the estimator are presented in Chapter V. These

I methods result in suboptimal estimators.

In Chapter VI, results of Monte Carlo simulations are

presented. The simulations are based on the suboptimal

0

filter simplifications of Chapter V.

Conclusions and recommendations are presented in

Chapter VII.

1
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SC
II. Multiple Model Adaptive Estimation

II.1 Introduction

In this chapter, the basic models for the signal and

noise processes are presented and multiple model adaptive

estimation for sequence hypotheses is developed. In Section

II.2, the basic models for signal and noise are presented.

The signal model (with no noise sources present) is the same.4

as used by Snyder and Fishman in their filter development

(Ref. 471 Their results are presented in Section 11.3. In

Section II.4, the concept of multiple model adaptive

estimation (MMAE) is motivated in order to deal with the

noise, and the general TAMAE structure is developed. The

MMAE concept is then applied to the general point process

problem by considering each model to be described by a

distinct hypothesis sequence that defines which observed

events are due to noise and which are due to signal.

Finally, the explicit MMAE filter for the particle beam

problem is presented in which the a posteriori statistics

are developed from a probability density point of view. In

general, these results are difficult to compute, thus

motivating Chapter III.

1
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11.2 The Model

11.2.1 Signal. In this research, the signal source is

the excited volume of neutral beam particles. The

spontaneous decay of electrons results in emission of

photons which may be observed by an array of photodetectors.

We wish to determine the position of the beam from the

observed photo-electron events.

As in Snyder and Fishman (Ref. 47), the signal is

modeled as a space-time point process on [t0 ,o ) X Rm

Each observation (photon detection) has associated with it a

time of occurrence tc[to., ) and spatial location TRm . A

physical detector array will result in a quantization of Rm

into a finite number of possible points. This quantization

- and any resulting effects are not addressed in this

research; the spatial measurements are allowed to assume

any value in m (or perhaps some properly defined subspace

of Rm ).

Let T and A be Borel sets in [to,-.) and Rm

respectively and let N(T X A) be the number of observed

point events in T X A . The number of observed events up to

time t (regardless of spatial location) is defined as

Am
Nt = N([to,t) X Rm ) (1)

The measurement history over the interval [to,t) consi

17



of a sequence of pairs

(2)

Nt t

where ti , i=1,2,...N t  is the time of occurrence and i

q is the spatial location of the photo-electron event.

We assume that the density of the particles at time

tc[to,) and location FeR m is

X (tPr)(t)) = A(t)expI- i[7-(t)w(t)]T

(3)

*R- (t)[r-11(t)x(t)]

where the under tilde denotes a random process, A(t) is a

known amplitude of the density function, H(t) is a known m

by n projection matrix, R(t) is a known symmetric

positive definite matrix for all tE[to,tf) , and the -(t)

indicates dependence on time. In Chapter III, a modeling

method is developed which allows these "known" parameters to

be random; however, the rate parameter expression given in

equation (3) will be used for the motivating particle beam

problem. The vector x(t) is an n dimensional Gaussian

output of a linear stochastic differential equation

18
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dx(t) E (t)-X(t)dt + G(t)du(t)

X(to) =ig t-to

where F(t) is an n by n dimensional known matrix function

of time, G(t) is an n by k dimensional matrix function of

qtime, u9(t) is a standard k dimensional Wiener process of

unit diffusion, and xo is a Gaussian random variable with

covariance Eo and mean 7o This definition is expanded

E in Section 111.5 to include feedback control.

* This form of i(t) is usefu~l because it is

descriptive of a large class of estimation and control

problems, it is flexible, and it results in an estimator

(described in Section 11.3) which is analogous to a Kalmtan

filter in several ways. Neither the Gaussian shaped signal

rate parameter nor the linear dynamical form of x(t) are

required for the multiple model nature of the full scale

estimator. We could consider a more general form of the

4 signal rate parameter and, perhaps, a non-linear stochastic

equation to define x(t) .With the appropriate elemental

estimator for this more general model, we can still use

multiple model adaptive estimation concepts for the full

scale estimator.

Surfaces of constant particle density form ellipsoids

in Rm and the centroid of the ellipsoids is H(t)7(t)

19
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I

The shape and size of the ellipsoids can change with time in

a deterministic manner and the centroid moves as a Gaussian

process.

We assume that:

qT'P+OITP

T+ TPm (5)

=Xs(tF1_i(t))

where Bt is the sub sigma algebra of events up to time to

and where c(r,T) = [ri,ri+pj).,...x[rmorm+Pm is a

mm

point events occur in [to,-) X Rm as a conditional space-

time Poisson point process. The particle density

X5( t,r,x(t)) defined in equation (3) is the rate parameter

of this conditional Poisson process.

Note that in the current description of the signa~l

modelP R(t) , A~t) , and H(t) are time varying

deterministic quantities. The model is expanded to admit

randomness in each of these in Chapter III.

20



11.2.2 Noise. We let the noise be modeled by a space-

time point process on [to,-) X R m and assume that

ljim Pr[N([t,t+T) X c(r,p))=lIB t]

(6)

n

so that noise induced photo-electron events occur as a

space-time Poisson process on [to,-o) X Rm with rate

parameter Xn(t , ) . If we allow the rate parameter to

depend on some random process 6 then x (t,r) is a

- -n

random process and the noise events occur as a Poisson

space-time point process conditioned on knowledge of 0

The noise process is assumed to be statistically

Eindependent of the signal process and additive. At this

point, there is no requirement to define Xn(t r) further.

We can develop the MMAE concepts with the current general

4

description of X (t,F) . In Chapter III, additional~n

restrictions will be placed on X m  a au) that

21
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and

C t

" f f fn(T fx )dnd<~(7)
to Y

where Y is Rm or a subspace of Rm to which we restrict

the estimator. This constraint is necessary for the

regularity proof in Chapter III and it is not physically

very restrictive. The condition does imply that the

observation of a noise induced event is not

(probabilistically) certain. For example, the subspace Y

could correspond to a finite two dimensional array of

photodetectors and the noise rate parameter could be a

constant.

The observed point process is composed of the sum of

the signal and the noise point processes. Since the signal

and noise processes are independent, the probability density

function of their sum is the convolution of the individual

probability density functions (Ref. 33:189), and the

characteristic function of the sum is the product of the

individual characteristic functions (Ref. 33:159). The

characteristic function for the signal process (conditioned

on x(t)) is

22



exp[?Ls(t ,,R(t)) (e JW-1)]

and the characteristic function for the noise process

(conditioned on knowledge of any uncertainties in Xn ) is

exp[Xn(t,-r ) (e 1-)]

where, for these two expressions only, j=-T and

is the frequency domain variable; this notation is used

here to be consistent with the notation of Papoulis (Ref.

33). The product of these two conditional characteristic

functions is the characteristic function of the sum of the

processes. The form of the product is that of a conditional

poisson point process with rate parameter

X(t,r,x(t)) X s(t,r,x(t)) + Xn(t,r )  (8)
-s -n

11.3 Snyder and Fishman Filter

Snyder and Fishman (Ref. 47) present an estimator for

the vector x(t) (when no noise is present) as

23



A ~Nt f/~* --
N E(t)Iz C(t)p(t)izNt (T(t)IZNt)dC (9)

Rm

where p(MlZNt) is the conditional probability density

Ntfunction of x(t) given the measurement history Z t

The estimator is developed for the signal model defined in

* the previous section when there is no noise: X (t) 0

The estimator is presented in differential form as

dF(t) =(t) (t)+ K(t)[-H(t)-Z(t)]N(dt X dF) (10)

AA T

d E(t) =F(t)E(t)dt+Z(t)FT(t)dt+G(t)G (t)dt
* (11)

-m Kyt)m~t),(t)N(dt X dr)

6

K~t K (t)eT(t) [H(t)^(t)L1T(t)+R(t)F (12)
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i(to) =

K A (13)
!=

where JN(dt X dr) is a counting integral (Ref. 11). They

also demonstrate that the conditional density function

p(i(t)IZNt) is Gaussian.

In the expanded model, which includes an independent

noise source, if we knew precisely which observed events

were due to the signal process and which were due to noise,

then we could, trivially, use Snyder and Fishman's filter

and only consider the signal observations. We don't know

which observed events are noise, but we can use a noise

rejection idea througn multiple model adaptive estimation

techniques.

II.4 Multiple Model Adaptive Estimation

In this section, multiple model adaptive estimation is

presented in general terms and then the specific MMAE

equations are developed for the point process signal plus

noise problem.

11.4.1 General MMAE. Let us suppose that we desire to

estimate the value of some quantity c(t) which is a random

process. If we use the minimum mean square error criterion

25
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of optimality, we can define the optimal estimate as the

expected value of x(t) given the measurement history Z Nt

x(t) E{=(t)[Z(t)p(IzNt)d (14)
I

where (t) is the dummy variable of integration for 7(t)

and p(T(t)IzNt) is the conditional probability density

function of 7(t) given the measurement history ZNt

(Note that the subscripts on the probability density

function have been dropped for simplicity of notation. This

convention is used in the rest of this dissertation unless

the subscripts are needed for clarity.) We use the same

notation to describe the measurement history here as we did

for the point process model description in Section 11.2 in

order to maintain continuity of notation. For this general

MMAE development, the measurement history zNt is whatever

measurement is appropriate to the physical problem and model

under consideration. There is no implication that the

general MMAE method is restricted to space-time point

processes. The integration in equation (14) is over the

domain of 7(t) and we assume that the probability density

function exists for the Riemann integral to have meaning.

26



Further suppose that we do not know how to model the

process 7(t) exactly to obtain the expression for

pc(T)iz Nt) but that we know that the correct model is one

of a finite set of possible models. (The restriction to a

finite set of possible models is not necessary for 11.IMAE in

general. In this point process application, however, it

will be natural to accept this type of model restriction.

That course is taken in this development. Athans and Chang

(Ref.2) consider linear Gaussian models which are

discretized to a finite set from a possible continuum of

models.)

Let there be J+1 possible models to represent the

process x(t) ,where each model is represented byh

j e0,1,2,3, .. ,J .Let

(15)

ih H

h.£

where 11 is an appropriately defined space. In an example

where the different models, or hypotheses, are represented

by real matrices, the space H could be a sufficiently

dimensioned real Euclidean space.

From equation (14), our definition for the optimal

estimator is

27
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x(t = ~Tp((t) I z Nt)dy (16)

The conditional probability density function also depends on

the model hj, so we can obtain the marginal density function

from the joint density function by

i(t) fC(t)fp(C(t),h ZNt )dhd, (17)
If

where h is the dummy variable for h.cH . By Bayes' rule
J

i(t) (t (Ct (18))~JZtdh_

Because we have limited the models to a finite set, the

probability density function p(hIZNt) is a dizcrete

density of the form
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J

p(hJZNt) - > Pr~hj is correctIzNt]6(h-hj (19)

j=0

where 6(') is the Dirac delta function and Pr[.] denotes

probability. We can substitute equation (19) into equation

(18) to get

J

x(t) = (tH p(T(t),h,zt Pr[hjIzt6(h-hj)dhd" (20)

fH j=U

and by the sifting property of the delta function

J

x (t) =fT(t)>.p(T(t)lhj,zNt)prhj!zNt]dt (21)

j=0

The interchange of the integration and summation from

equation (20) to equation (21) is justified by the fact that

the sum is finite. By changing the order of the

29



integration and summation again, we obtain

J

(t) Pr[hjlZt] (t)p(Clt)Ihi Z~td (22)

j=O

J

Pr[hj1Z Nt]E{(t )i hj,zNt} (23)

j=0

N^

= Pr[hjIZ tIxJ(t) (24)

j=0

In equation (24), xj(t) is the estimate of x(t)

conditioned on the measurement history and the specific

model. The various densities in the above development are

assumed to exist, although a parallel development can be

made using probability distribution or measure theory

notation. The overall structure of the estimator is shown

in Figure 1.

We also desire to find the covariance for the multiple

30



estimator
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model adaptive estimator. This is useful as a measure of

the estimator's performance, although it is not necessary to

calculate it for the online estimator. The covariance for

the full scale estimator is defined as

F(t) A E{(x(t) - x(t))(R(t) - x(t))TIzNt} (25)

We define the covariance of the individual estimators in the

"bank" as

j = - -()t)Tj (26)

The covariance of the multiple model adaptive estimator, in

terms of the individual covariances and estimates, is (Ref.

2:30 and 7:420)

J
^ Pr[hj [ t ^ [x ^t- (27

E(t) Z(t)+[xjt (t)-(t) (27)

j=0

Examples of MMAE for linear systems driven by white

32
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Gaussian noise are given in references 2,7,26 and 27 vol.

II. For these models, the individual estimators are Kalman

filters, each one tuned to match the associated model

hypothesis. The weighting terms, Pr[hi Nt ]  can be

calculated recursively (Ref. 2:33). Except for the fact

that J+1 Kalman filters must be operated simultaneously, the

q filter structure is computationally reasonable via

distributed processing. The requirements for memory and

calculation do not expand as each measurement is made.

4 Note that this development has assumed that only one

hypothesis is correct over the observation interval. If the

system is modeled such that it is allowed to switch from one

hypothesis to another between measurement times, then we

must calculate the a posteriori probabilities based on

histories of hypotheses. This leads to an exponentially

expanding number of filters in the "bank" (Ref. 7). If the

switching is allowed to occur as a Markov-1 process, then

the number of filters expands as the square of the number of

possible states. The expanding number of hypotheses and the

resulting expanding requirements for memory and calculation

characterize multiple model adaptive estimation for the

point process problem under consideration.

11.4.2 MMAE for Point Process Signal in Noise. With

the signal and noise models described in the first section

of this chapter, the observed process is conditionally
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Poisson and the observations consist of a sequence of pairs,

X time of occurrence and spatial location, as shown in

equation (2). Each observed point event ( (t,r) pair) is

either due to the underlying signal process or to the

underlying noise process. We can use this concept of a

binary decision at each observed point event to construct

all of the possible sequences of noise/signal events which

qcould have produced the observed sequence.

For example, at time to, Nt  is zero; no events have

been observed. When the first point event is observed at

time t, and location r, we have a measurement sequence

consisting of one data point for the observation interval

[to0 t),tl<t • This observed event could have been caused

by either the signal process or the noise process. We can

represent the possible hypotheses with a tree diagram as in

Figure 2.

A hypothesis sequence is denoted as h.Nt where the
3

subscript jr{o,1, ... ,(2 Nt)-l} denotes which particular

sequence is identified and the superscript Nt  is the

number of data points observed up to the time when the

sequence 11Nt is defined. When an argument is present as in

33
hjNt(i), i=1,2,3, ... Nt  P we refer to the value of the

sequence at time ti . A hypothesis sequence can be written

as

34



I signal

h: one event due
to signal1

ho: one event due
< to noise

h

noise

to ti

Figure 2. Hypothesis Sequences for One Measurement

t N Nt

h t = {h t(1),h. (2), ... h t(N)} (28)

The notation can be understood more easily in the following

examples.

In Figure 2, the hypothesis sequence h1 is that the
1

event observed at t, was due to signal and hypothesis

sequence h' denotes that the event at tj was due to noise.
0

The sequence h' is composed of the single entry
1

35



(29)hI={h'(1)1 = {1} (29

where hl(1) is the value of the sequence ll at time
1

ti • Values are assigned as

h.Nt(i) = : event due to signal
3

(30)

0 : event due to noise

By the same method, the sequence h1  is defined as
U

1 1

h 0 = {h 0 (1)} = (0} (31)

The upward branches on the tree denote data points which we

associate with the signal process and the downward branches

are for noise caused data points.

When a second data point is observed at t2  , there are
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h(2)=1
2

i) = / / .- h3={1, 1}
h. h3(M=

3 (1)=0

2~h
2={1,0}

2*= 
ho={O,O}

4I _t

t 0tI t 2

c QFigure 3. Hypothesis Sequences for Two Measurements

four possible sequences to describe the origination of the

two data points over the interval [tn,t), t2<t . These can

be shown as in Figure 3.

From Figure 3, it can be seen that under hypothesis
2

* h2  , the first observed event (at time t, ) is assumed to

have been caused by the signal process (h2(1)=) The

second observed event is assumed to have been caused by the
2

* noise process ( h2(2)=0 ). The entire sequence can be

explicitl. written as

3
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AE 2= 2o}32£ h2  {h2 (1),h2(2)} = {1,O0 (32)
i" .2 2

In a similar manner, the other three possible

hypotheses are defined, for Nt=2 , as

h 2
h0 =

Sh = {0(33)

2h= {,1}

Figure 4 shows the tree diagram for the time interval

[t0,t), t3<t . For clarity, only the values of one

sequence are labeled.

From this example, it can be seen that for any time

6 interval [to t) , there are exactly 2 Nt possible

sequences. These sequences describe all of the possible

ways in which a signal process and a noise process could

4 have caused the observed measurement history. Thus, we need

only consider a finite (although growing) number of possible

models as described in the last section. The close analogy

4 to the time varying parameter case of reference 7 can now be

38
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h73

Ih

.3 h5(2 )=0 h,
hs(1)= I

3II h 3

2

3

3

It.~~ , I t t

Figure 4. Hypothesis Sequences for Three Measurements

seen.

In order to use .IMAE for the point process signal plus
Nt

noise problem, we associate each hypothesis h. with a3

distinct model of the observed process and expand our

hypothesis definition of equation (15) to

hjN t , j e 0,1,2, 2 , Nt-1 (34)

For the time interval [t0 ,t) , the measurement history

is
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Nt
Z {( )(. (tNtrNt)} (35)

The number of events, Nt , is implicitly included in ZNt.

We can apply equation (24) to obtain the expression for the

iq optimal estimate of x(t)

( 2 Nt )-1

x(t) = Pr[hj t. I (t) (3)

j=O

where

N Nt
xj(t) : E{K(t) hj ,Z mt }  (37)

Because of the assumption that the signal and noise are

independent, we can ignore all observed data points which,

based on the hypothesis sequence h Nt are caused by

noise. Equation (37) is the estimate of i(t) obtained by

only considering those data observations for which

h Nt(i)=l for i c 1,2,3,...N • These individual filters
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are thus "tuned" to the respective hypothesis sequences.

( The structure of the overall estimator is the same as

shown in Figure 1, however, now the form of the individual

estimators depends on the particular point process signal

Iunder consideration. For the conditionally Poisson point

process signal model described in Section 11.2, the

individual estimators are the Snyder-Fishman filters

q described in Section 11.3.

A significant difference between sequence hypothesis

MMAE and the constant parameter linear Gaussian MMAE case

described previously is that, in the sequence case, the

number of filters doubles with each observed data point.

There is a close analogy between sequence hypothesis MMAE

for a point process model and the time varying parameter

multiple model adaptive estimator. The growing number of

filters places a serious computational burden on the

estimator. Methods of alleviating this burden are considered

in Chapter V.

11.4.3 MMAE for the Particle Beam Problem. Equation

(36) defines the overall estimate of x(t) and Snyder and

Fishman's results (equations 10-13) provide the means for

evaluating the individual model estimates .(t). The only

remaining term to specify analytically is Pr[hjNtIZNt], the

weighting factor.

To simplify notation, denote a single space-time

observation as
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(i) = (tii) = [_ j(38)
r i

and the measurement history over [to,t] as

IN"Nt (39)
Z = { (1),(2),...,z(Nt)} (39)

Note that the sub-sigma field B includes all the

information in Z .

In terms of this notation, the goal is to evaluate

Nt zNtiSPr[h. Z

i3

= Pr[hj t(1),...,hj t(Nt)l(1),...,z(Nt)J (40)

The probabilities of equation (40) can be combined into a

discrete probability density function. We can use Bayes'

rule to obtain (Ref. 33:176)

42



GS

Nt
2 -1NN NN

6(k-h. t)Pr~hj It ] t=P(h'z t) (41)N t N

j=o

The denominator of equation (41) is a probability density

function evaluated at ZNt . It is the probability density

4 of obtaining the specific realization ZNt over the interval

[t0,t) , tN <t<t Nt+1 from the space-time conditionally

Poisson process with rate parameter X(t,F,R(t)) defined by

93 equation (8). This density is termed the sample function

density (sfd). Snyder (Ref. 46) develops the sample

function density for a temporal (no spatial dependence)

Poisson process. The brief development of the sample

functior density presented here for a space-time Poisson

process follows Snyder's method.

Because the process in question is Poisson conditioned

on knowledge of (t) and any uncertainties in Xn(.), we

first consider the (trivial) case of 7(t) and Xn(.) known

exactly. The random case will be discussed at the end of

this section. Two additional pieces of notation will be

useful for developing the sample function density. Let
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N t(Y) N([to,t) X Y) (2

[In

where Y 9R'. Thus N t(Y) is the number of space--time point

events observed on [t0,t)X Y Note, that i~f Y = 1,m

then Nt (Y)=N t as defined in equation (1). For to0-v<t

let

Nvt(Y) = Nt(Y) - Nv(Y) (43)

Since we have assumed a space-time Poisson odel, N t(Y)

is Poisson distributed with rate parameter X(t, i(t)).

We begin by writing the probability that the

|N

realization t of the process occurs within some small

space-time volume which includes t NNt Nt

Pr[ Nt [Z tz t4.AZ)]

=Pr[T1,,[tj,t,+At,),...,T NtE[tN t tNt+AtNt)

lcc(,,l,. ...,P'tCC(FTNN) (44)

4 t t t44



where C ,r1  and T.are the dummy variables for Z N, t.i

and r i respectively, iE{1 ,2,3, ... N t} and the

observation interval is [tot)XRm  The cubes in Rm are

defined as before except they are now indexed in time by i:

A rc.( i' ) A Er lr 11 +p. )X ... X[r im~r.i +p. i) C c. (5

Equation (44) can be equivalently written as

N t N N
Pr[4 e[Z ,Z +AZ)]=

Pr[N tt(Rm ) 0, N tt+AtOI rccl) I ,N tt+At'j~1~0

N t+Atlt(R m ) 0, N t2 ,t2+At2 (F2EC2) 1 ,N t2,t2+At2 (r20C2)=O,

* (46)

N + +At N t('F N c N t)=O,N tt +At Nt t(Rrn)=O)
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ij.r Because Nv t(Y) is distributed as a Poisson process, we can

use the independent increment property to factor the right

hand side of equation (46) as

Pr[Nt , (R')=o]Pr[Nt ('Fc,)=1Pr[N t+At (71 0c,)=O

"Pr[Nt 1+Atlt2 (R
m )=O]...Pr[N t Pt +At (rN tcCN )=0 (47)

Nt Nt Nt t t

6

•Pr[Ntt+At tt (Rm) = 0
N t N't

Each of these probability terms can be written in integral

form and the terms collected to arrive at

NN tNtPr[ [ z~t +AZ)]

N l t i +At i

(48)
t

exp - " ( , , ( ))d d

to
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With this expression, we can now develop the

( probability density function. The sample function density

is defined as the limit of the probability (defined by

equation (48)) divided by the incremental space-time volume

as the space-time volume goes to zero (Ref. 46:58):

I

p( m Xd~dt exp- XddT]

p(Z = lim i=l 'ii (49)
At4 Nt Niic m

PijO 
ti 1 Pij

where the arguments of X(t,r,x(t)) have been dropped for
.th- si(4)

simplicity, and pij is the j element of p as in (45).

As written, the limit in equation (49) is

indeterminate; however, by repeated use of l'Hospital's

rule and Leibnitz's rule, the limit can be evaluated as
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Nt Nt
p(Z t) R X (ti~ i x t )

i=1

Lexp- X(rT,x(-c))dL-d] (50)

for t t<t

Note that x(t) is assumed known in equation (50). For

subsequent use, we note that equation (50) can be factored

into the recursion

N N-1p(Z t)= -(tNt,rNt,X(tNt)).exp [-tN-i Rxddp(ZNt - ()
t

I (51)

fort N t < tNt+l

Nt- 1

where p(Z ) is evaluated at time tN .
Nt1

We now turn to evaluation of the numerator in equation
Nt

(41) for values of h=h. By the use of Bayes' rule, we

can write

48
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N N N t
ph t p.h t (N ).t ,h, t(i),i(Nt),.. .,z(i)) (52)

N N

pphhitN(N(N(N)Jh N ht

(53)

-ph Nt-i Nt-i1 N- I Nt- I

3~ (N t) 2(N t)1h i 9 )p(h ) (54)

At this point, the Jt  notation requires some

explanation. The sequence h.i is defined as

3 t-j :i (Nt =0

jN (55)

SN t-1N
1h :if h (N =1
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The variable j is an index for keeping track of the

sequences. As each new data point is observed, the number

of possible sequences doubles and the numbering (indexing)

of nearly every sequence changes as shown in Figures 2,3

and 4. The only sequence which does not change index value

is the "all noise" sequence. Therefore, the value of j is

almost never equal to the value of j' in equation (54).

This complicated notation is necessary due to the

expanding number of sequences. The concept can be stated

clearly in words as:

N -1 N -1
h is the sequence (out of 2 possible

sequences) which is concatenated with the sequence
Nt Nt

value hj Nt) to obtain the sequence h .

The actual values of the indices j and j' are not important

to the MMAE problem; it is only necessary that the correct

sequence be identified. Obviously, the value of the indices

* is important to the implementation of the estimator.

We can now combine equations (54) and (51) to show that
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N N p(hNtZNt)
Pr[h. t =z t I 

____CP(zNt)

Nt  Nt-1 Nt-1 Nt-1 Nt-1

t (Nt h)e P~!4Jd dT

= p(hji (N t),z(t hj.,Z ) •ph.,

X(tNt, t N ))exp NpdT p(Z (56)

, N -1

, where the upper limit of integration on the time integral

has been changed from t to tNt to reflect the fact that we

are interested in evaluating Pr[h NtIZNt] immediately

C 9after having observed the point event at tNt

From Bayes' rule in the form of equation (41) it can be

seen that equation (56) is recursive

Pr[h N tj =

I

Nph N t - 1  Nt-1
p(h3 (Nt),z(NL)I hjt Z )

t t (57)

,(tN ,rN0 (tN ))ex[-ff/dd]
t L tN I

Nr t

Prh t IZ t

The one remaining term to specify for completion of
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this MMAE example is the numeratorC

N Nt-1 Nt-1
p(hj (Nt),z(Nt)1hj , ) (58)

The method for evaluating this mixed (discrete and

continuous) density is similar to that used to develop the

sample function density. There are two possible values for

Nt Nt
h. (Nt) , 0 or 1. Consider hj (Nt) = 0 first:

Nt N hjt - 1 N t- 1l

Prj (Nt) =OE(N t):[t Ntt +At)XC Nt 1h ,Z

= Pr [no signal event in [t t1JtNt) and only
L t Nt

one noise event in [tNt-1,tNt At)

Nt-1 Nt- -1
at [tN t,tN t +At)XcN t  h j  ,

(59)

In equation (59), the conditioning is on a specific
Nt-i

value of h.. and an observed realization of the
3
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measurement history Z ~ti. Since these are both values

(or realizations as opposed to functional forms dependent on

xs or Xn  ), and since the signal and noise processes are

independent, we can factor equation (59) as

Pr[. Pr no signal event in [tN t1stN t )h -4Zt]=t t,

* .Pr [Only one noise event in [t NtltNt+

'N+At)XcN t-~
at [tNtPtN t+ Nt hj ,z

(60)

(If we were not given values, the joint conditional

probability density is not, in general, factorable.) By the

independent increment property of the signal and noise

Poisson processes, the conditioning can be dropped resulting

in

Pr[.] = Pr[no signal event in [tNtl tNt)]

*Pr only one noise event in tNt 1 , t Nt+At)

- at [t N tN +At)XcNti
t t J (63.)
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t

I *ex{ f ?d~d-J (62)

where the arguments of Xsand X nhave been dropped for
to simplicity. We can obtain the density for equation (58)

whnh (N )=O (as we did for the sample function density

i"t

development) by a limiting method

N tN t-i N t-

tN t At tN

* xp f fX Lcj - I~ x ndJdTex{. X n dLdT]

tN- R t r NEC N t R

lim
m

i- tAt-t

- N-*0At n P ~N t
t j=1 (63)
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By repeated use of l'Hospital's rule and Leibnitz's rule,

this reduces to

Nt  N t- N-

p(hjt (Nt) = O,(Nt)h at,Zt)

t tN

- n (t Nt ~rN t expf- 1 f XdTdT (64)

*j tNt -1 Rm

where

X = X(t,r, (t)) = X s(t,F , x(t)) + Xn(t,r) (65)

* By the same argument, it can be shown that

4
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Nt Nt-I Nt-i
p(h. (Nt) = i,z(Nt)ih t, )

tN

A rNXt)eX3d (66)
s(tNtj ~ t exN tJ4Adt j

We now have all the pieces necessary to calculate the

weighting factors in equation (36). By substituting

equation (64) or (66) as appropriate into equation (57), it

can be seen that

An (tNt rNt) Nti zNt- I
•Pr[hj. )

X(tt rx(t)

t Nt t

NN
if hij (N t )

= 0

Nt

Pr[h. IZNt] =

x (tNtJ r'N (tN N -1 Nt- 1

s t t t Pr[h. j, zt I
(tN trN t,(tN t r

(67)

Nt
if h (Nt)
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where the denominator is given in equation (65).p.

Thus, equation (36) defines our multiple model adaptive

estimator, where the weighting factors are defined by

equation (67) and x.(t) is the Snyder and Fishman filter

th
estimate of X(t) given the j hypothesis. This

development is for the case of a known x(t) , as assumed

just prior to equation (42). The

I

Pr s or n Pr[-3 (68)

s n

form provides insight into the nature of the weighting

process and a similar form will be seen in the estimator

developed in Chapter IV.

It is trivia., however, to estimate x(t) when we have

assumed that it is a known deterministic function. We could

correct this by allowing x(t) to be random and proceed as

before to solve for the weighting factors in equation (41).

The denominator of equation (41), the sample function
Nt

density of equation (50), is actually p(Z tix(t)=(t)) in

this case and we can write

57
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" "

C

p(zt) = fP(zI(t) = E(t))p(T(t))dT (69)

Rn

where [(t) is the dummy variable for x(t) Because x(t)

is defined as the output of a linear Gaussian system,

p(x(t)) exists and the integration in equation (69) can,

in principle, be performed although it is complicated and a

Iq closed form solution might not be possible.

Similarly, the numerator of equation (41) must be

developed given x(t) as random and then averaging over the

statistics of the x(t) process.

A furcher complication arises when we add feedback to

achieve some sort of optimal control for the system. One

form of the feedback could be as a control input
• Nt

jc(t,Z ) to the equation

4
d3 (t) = F(t)x(t) dt+G(tNdu(t) + Z(t,Z N) (0

_ Nt

where c'(t,Z ) is an n dimensional control vector

generated in some optimal manner from the observed process.
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The presence of j-(t,Z ) will affect the form of the

density p(x(t)) and may make the integrations even more

complicated, if not intractable.

The serious computational problems which arise with

random x(t) and feedback control motivate us to consider

modeling concepts other than the probability density

approach taken in this chapter.

11.5 Summary

In this chapter, the physical model of the observed

process is presented in which a space-time point process

signal is observed, corrupted by space-time point process

noise. The processes are assumed to be conditionally

Poisson and statistically independent of each other.

General MMAE techniques are discussed and the equations for

NMAE on this point process problem are developed for non

random rate parameters As and A . The development is

based on probability density functions. The form of this

estimator will provide insight in later chapters. The

difficulties associated with using a probability density

function approach for random rate parameters are discussed

and motivation for the measure theory approach of Chapter
4

III is presented.

a
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In Chapter III, the observed physical process described

in this chapter is modeled as a doubly stochastic space-time

Poisson point process. This "cross product space" model and

a measure theory approach to the statistics will allow us to

overcome both the complex integration and feedback problems

encountered in this chapter.

A

A
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III. Cross Product Space !Jodel

III.1 Introduction

The difficulties encountered in Chapter II in obtaining

useful evaluations of the equations for multiple model

adaptive estimation stem from the basic approach taken. The

uncertainties were modeled in terms of probability density
I

functions of random processes. This results in expressions

which are very difficult to evaluate (equation (69) for

example) except for trivial cases such as a known, non-

random x(t) . The addition of feedback control further

complicates evaluation of the estimator equations.

In this chapter, a fundamentally different modeling

approach is taken, but one which coincides well with the

physical problem under consideration and which will allow us

to make use of the MMAE development in Chapter II. The

observed process is modeled as a doubly stochastic space-

mtime point process on [t 0 ,t)XR
m  

. The statistics are

defined using measure theory concepts on a cross product of

two probability spaces and feedback control is included in

the basic model. Some necessary results from Fishman,

Reference 11, are presented in Sections 111.2 and 111.3,

including a definition of regularity for a doubly stochastic
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space-time point process. The implications of regularity

are discussed in Section III.4 This section presents the

tools necessary for overcoming the difficulties encountered

in Chapter II in deriving tile weighting factors for the

multiple model adaptive estimator. The main result is

Theorem 111.6, the representation theorem, which provides a

method for calculating a posteriori probabilities of the

form needed for the weighting factors.

In Section III.4, an analytic description of the beam

4 point process estimation problem is given in terms of the

cross product space model and a regularity proof is given

for this analytical form.

111.2 Doubly Stochastic Space-Time Point P"ocess

In general terms, a doubly stochastic space-time point

process is a space-time point process in which some

parameter of the process is itself random. Our physical

model for the beam problem fits this description: we

observe a space-time point process on [t0 ,t)XRm  and we

wish to estimate the state of the Markov process which

determines the location of the centroid of the observed

process. We have additicnally assumed that, given x(t) and

x n(.), the process is Poisson. This assumption is not

necessary, however, for the results presented in this

section. As defined in equation (4), x(t) is random and we

wish to allow other terms in X (.) to be random. A random
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noise rate parameter is also desired and can be used to

Cmodel uncertainties in external noise sources or in the

detector. Thus, the particle beam problem can be described

readily in terms of a doubly stochastic point process.

We begin a more thorough description by defining a

probability space (sAs ,Ps) where 0s is a nonempty set,

is a Borel field (sigma field) of subsets of fs and Ps is

a probability measure on As . This probability space

corresponds to events we cannot observe directly. For all

WseCs  let there be a probability space (SI,B,P(-ws ))where

the probability measure P(';ws) is dependent on the event

in PS  B is a Borel field of subsets of Q and P(.;w)

is a probability measure on B . If for every BeB

P(B;-) is measurable on (QsA s ) then it can be shown (Ref.

32) that a unique joint probability measure P' exists on

(Qsxs,A sXB) (where As xB denotes the product algebra

of A. and B (Ref. 32:71)) such that

P'(AXB) = fP(B;w) Ps(dws) (71)

A

Ac B
s

BE
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and a unique probability measure Pexists on (02,B)

P(B P OS XB) f fP(B;w s)P s(dwS) (72)

In addition, if W(O)S;W) is a random variable on

0 s 5 xQ,A 505B) then

fWdP' f ffW (w S;w)P(dw;ws) ]P S(dwS) (73)

Let U and V be mappings from Eto,co) X 0 to [to,co) X Rm
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U:[to) X S 1 [to,oo) X Rm

(74)

V:[to,) X 0 [to,co) X Rm

in which an event BeB is mapped into a set of space time

points in [to,co) X Rm . The underlying probability space

for the process U is (s2,B,P(.;ws)) . The underlying

fo probability space for the process V is (Q,B,P) Note

that U and V have identical pre-image and image spaces. The

distinction between the two processes is that we explicitly

show the dependence on Ws for process U.

This definition of a doubly stochastic space-time point

process as a mapping from a cross product of probability

spaces gives us a convenient framework for describing the

particle beam problem. We observe point events, i(i)

iC1,2,...,N t which are generated by a conditionally Poisson

4 process. The rate parameter, X(.), of the Poisson process

is defined by equation (8) and is itself a function of the

random process -(t) and A (.) . If we let the

probability space (s,AsP ) specify the random nature of
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x(t) and (the potentially random) Xn( . ) , then given

W s the process U is Poisson. Furthermore, the doubly

stochastic space-time point process V is defined for this

application. Figure 5 summarizes this modeling concept.

111.3 Regularity

Several important results can be obtained if the doubly

stochastic space-time point process (modeled as a mapping

I from a cross product of probability spaces) is regular. We

first consider the definition of regularity and then some

useful implications of regularity. Some preliminary

definitions and notation are necessary prior to defining

regularity.

Definition I1I-1. Let t be an element of [t0 ,T) and

let Nt be defined as before. Let Bt denote the

subsigma field of B generated by the random variables

{Nt , ( t , -r,) ,  N , t rN t t)

This can be interpreted as the sigma field generated by the

sample paths of the point process up to time t.
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- w influences the events
s in Q

- is not directly
observable

(Q,B,P(.; ; s))

'i(Q,B.9p)

V(t;w)

- We observe the random
process V

- We desire to estimate w
based on observations
of V

Figure 5. The Spaces

67



Definition 111-2. A space-time point process is called

conditionally orderly if for each point (t,r)e[to,T)X Y

lim

Pr[N([t,t+At)Xc(,p))-2Bt O ) (75)
"*O Pr[N([t,t+At)Xc(_r,_))2 jB t](W)

1 ~w.p. 1

whenever the denominator does not vanish.

Conditional orderliness essentially guarantees that the

observed events are distinct; the probability of two or

more point events occurring at the same time and spatial

location is zero.

Definition 111-3. Let z(i)c[to,t) X Y ,i

1,2,3, ... ,Nt., be defined as in equation (38) and let

i(i) denote a random variable for the observation at

time t. and spatial location r.
1 1
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S( i)- (76)

ij

The jth order distribution function is defined for j

>1 by

Fj(Z) (z(1),z(2), ... z(j))= Fj

Z(i)E[to,t) X Y (77)

i = 1,2, ... ,j

where the vector inequality is taken as an inequality

on each corresponding element of the two vectors.

We can now define the conditions a space-time point

process must satisfy in order to be regular.
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Definition 111-4. A space-time point process which

maps into [t0 ,t)XY is regular if the following four

conditions are satisfied:

(a) Each distribution function

q
Fj(Z3 ) L Fj (z(i), ,z(j)) (78)

j = 1,2, .. N

is absolutely continuous on

R(m+l)j (79)

(b)

Pr[(tj+l, j+l) (tj,t)XY[Bt.]< 1  (80)

w.p.1

for all finite t, j=O,1,2,

(c) The point process is conditionally orderly. (81)

70



(d)

Pr[N([to,t)XY)<o] = 1 (82)

for all finite t (Ref. 11:79)

Condition (b) requires that the conditional probability of a

new point occurring anywhere in Y , for finite t , is less

than one; that is, there are no guaranteed points.

Condition (d) requires that the number of points in Y is

finite, for finite t .

Our processes will be modeled as doubly stochastic

point processes. Regularity for this case is defined as

follows.

Definition 111-5. A regular doubly stochastic space-

time point process V:[to,T)XQ-[t 0 ,T)XY is a doubly

4 stochastic point process such that U (equation 74)

is a regular space-time point process for each W s

(Ref. 11:105).

Definition 111-5 provides the conditions under which

the doubly stochastic space-time point process V is

regular. In order to use the results of the next section,
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we require that V be a regular space-time point process

(versus a regular doubly stochastic space-time point

process). The distinction is that for a regular doubly

stochastic space-time point process, V , we must specify

Ss  to insure the regularity of V . If V is a regular

space-time point process, we do not need to specify ws to

use the results of regularity (even though V is dependent

on w s ). The necessary conditions for this are provided by

Theorem III-1.

The 4(.) functions in the following theorem are

termed hazard functions and they specify the infinitesimal

properties of regular space-time point processes. A hazard

function is the conditional instantaneous rate of occurrence

( of new events per space-time volume. The hazard function,

for the general regular space-time point process

corresponds exactly to the rate parameter, X(.) , for a

Poisson space-time point process. The existence and

usefulness of hazard functions are discussed in Section

111.4.1. For a proof of Theorem III.1, see reference 11

pages 106-116.

Theorem III-1. Let V be a regular doubly stochastic

space-time point process such that
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(a) If BeB and te[to,T) then P(B;wslBt)(w) is

measurable with respect to the product sigma field

AOB (83)

ms

(b) For each point (t,*') [t0,T) X Y

!

*(t,r) = E,{q(t,F;w,;w 1}
S

(84)

(t ,F;W;w s)P(dwXdws) <0o

QxQ
s

(c) 0(t,;w;w ) is meauurable with respect to
S

(85)

4 [ta 1 t) X Rm X B X A5

Then V is a regular space-time point process.

II
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111.4 Implications of Regularity

When a space-time point process satisfies the

conditions for regularity, it can be shown that the

associated hazard function for the process exists (Ref.

11:83-89). A sample function density can be written in

terms of the hazard function in several illustrative forms.

Of direct importance to the estimation and control problem

for a point process signal in point process noise is that

the hazard function for the doubly stochastic space-time

point process V is dependent on W and w . The W
5

dependence allows for feedback control of the system from

the observations in [t ,T)XRm  . Regularity also provides
0

( a means of calculating Ps(AIBt), the probability of an event

AeAs given the sub-sigma algebra generated by the

measurements, B . If we model, in s , the uncertainty
t

of whether the noise process or signal process caused an

observed point event, then we can use P5 (AISt) to derive

the probability that a particular hypothesis sequence

(represented by A) occurred, given Bt * This is the key

result necessary to develop the individual filter weights

for the multiple model adaptive estimator.

As a result of regularity, we can also develop a direct

estimator (as opposed to a multiple model adaptive

estimator) for the process K(t) when the observations are

corrupted by point process noise. The direct estimator is
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developed in Appendix A. The multiple model adaptive

estimator approach results in much simpler individual

expressions to evaluate than does the direct estimator. The

tradeoff is the growing requirement for calculation and

memory necessary for the MMAE approach.

The specific implications of regularity are presented

in the rest of this section. They are due to Fishman (Ref.

11) and are presented without proof as background for the

multiple model adaptive estimation filter development in

'Chapter IV.

111.4.1 Hazard Functions. We let W be a space-time

point process, W:[t 0,T)XQ+[to,t)XRm  . If this "space-

time point process is regular, that is, it satisfies

definition TII-4, then the hazard function, (t,7;W),E

exists (Ref. 11:83-89). The infinitesimal properties of the

regular space-time point process are described in the

following theorem.

I Theorem 111-2. The following limit holds (w.p.1) for

almost all (t,r)s[to,T)XY

7
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lir

At4O (Atp)-Pr[N([t,t+At)Xc(rP)) lIBt](w)

-!

At+O (AtT) Pr[N([t,t+At)Xc(r,p)) = lIBt](w)

= €(t,i;w)

Proof: (Ref 11:89)

If a doubly stochastic space-time point process V is

regular (Definition 111-5), then each process U is

regular for a given sEs . A hazard function exists for

each doubly stochastic regular space-time point process V

and is of the form (t,F;W;w s) , wE ,s . The

dependence on w s  is due to the requirement that U is

regular given w5 .

If the doubly stochastic regular space-time point

process V satisfies Theorem III-l, then V is a regular
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space-time point process (note, the "doubly stochastic"

qualifier has been dropped). Because the space-time point

process V is regular, a hazard function exists in the

form (t,r;w) . The evaluation of T(t,r;w) is presented

in the following theorem.

Theorem 111-3. Let V be a doubly stochastic space-

time point process satisfying Theorem III-1. Then

(w.p.1) the following equation is valid for almost all

(t,r)e[to,T) X Y

q

"I

(tr~w) = A 4(tF''Ws)I~Bt (87)

where A0sA is the set {P,Qs} , and 0 is

the empty set.

Proof: (Ref. 11:117)
U

The conditioning on the sub-sigma field AoeBt is
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equivalent to conditioning on the "measurement history" Bt

and no further information about 02s

Sample function densities for regular space-time point

processes can be written in terms of hazard functions, as

shown in the following theorem.

Theorem 111-4. Let V be a regular space-time point

process which maps into [to,T) X Y . Let tE[to,T)

and denote the sample function density on [t0 ,t) X Y

as Lt(w) . Then (w.p.1)

1t

a.s. [ ]
Lt(W) : exp fj (TT;w)didT (88)

to Y

for Nt  0

Nt = t

Lt(W) =( r ¢(i ;w)ex p - (T ,7; .)d~dT

(89)

N t -> 1

Proof: (Ref 11:92)
7
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Equation (89) can be written alternately as

t Nt

Lt(w) = exp[-f f4(TT;w)ddT+ lno(tiri;w)] (90)

toY i=

or

t ]
L Lt(W) exp -f fS (T ',;w)d7dT+fflno

(T 't;w)N(dTX d )] (91)

to Y toy

where the last integral in equation (91) is called a

4 stochastic counting integral and is defined by

t N tffln(T,T;w)N(dTXdT)- ln$(tipi;<) (92)

to Y i=1
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~A

( We can similarly define the sample function density of

the doubly stochastic regular space-time point process V

as

t rt

L t (W ' ) = S II( i ri;;)s )eXp -( , ;, s)d~d (93)

i~l to Y
I

Nt 2- 1

and the Nt=O case is exactly analogous to equation (88).

Furthermore, we can write the sample function density

of the regular space-time point process V in terms of
A

*(') (recall the definition in equation (87)).

Theorem 111-5. Let the doubly stochastic regular

space-time point process V satisfy Theorem III-1 (V

is regular). Then
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Nt t

L (w) = H r(tir;w)exp[J (T,;w)d~dT (94)tto Y

- f Lt(w;ws)Ps(dws)

SEs{L t ;ws))

Proof: (Ref. 11:118-119)

With these preliminaries, we can now write the

representation theorem. This gives us the means of

evaluating the probability of an event AEA s (which is not

directly observable) given Bt -

Theorem 111-6, Representation Theorem. Let a doubly

stochastic space-time point process, V satisfy the

conditions of Theorem III-i on [toT)XY Then

81



J Lt(W; )P s(dw S)
A (95)

P (AIBt) A

L Lt(;Ws)Ps(dw s)

=Es{Lt(w;s) APsA (96)

E{L (W;W )JwC}SA
st 'S (

AE As

Proof: (Ref. 11:127)
A

As mentioned previously, it is the representation
4 Nt

theorem which will allow us to evaluate the Pr[h. is

correct IBt ] terms in the multiple model adaptive

estimator posed in Chapter II.
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With the tools of this section, the next steps are to:

(a) Develop an analytical description of the particle

beam problem which fits the cross product space

modeling concept.

(b) Prove that the process U specified by the

qanalytical model is regular (Definition 111-4).

(c) Prove that the space-time point process V

specified by the analytical model is regular (Theorem

111-1).

This is accomplished in the next section.

111.5 Analytical Cross Product Space Model

The conceptual cross product space model has been

presented already in Figure 5. In this section, we develop

an analytical description for the particle beam problem

which fits the cross product space concept. The analytical

description is necessary for evaluating the multiple model

adaptive estimator in Chapter IV.

111.5.1 The Observed Space, _ . Let U be a random

point process U:[t 0,T)X[t0 ,T)XR . We assume that the

process is Poisson, conditioned on w s s ,where 0s is

described in Section 111.5.2. We let the rate parameter for
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* the conditional Poisson process be X(t,r;w;ws) where wco

Ws s  . Note that X(.) is random; however, the under

tilde notation has been dropped because the dependence on

W and w is shown explicitly.

The basic assumption made here is that the process is

Poisson, conditioned on s This assumption is made

because a conditionally Poisson process models the photo-

electron events adequately (Ref. 13:49-55). As will be

shown later in this section, if we restrict X(.) so that

t

f f X(T,;W;Ws)d~dT < (97)

i toY

for all t <

then U is a doubly stochastic regular space-time point

process, the hazard function

=(t'i;W;W s X(tr;w;w ) (98)

exists, and the dependence of X(.) on both w and w is

justified.
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111.5.2 The Unobserved Space . Let (n2,As,Ps) be

a probability space in which ws Cs . Further, let it be a

cross product of three distinct probability spaces

(QAs Ps )
S 1, 1 9

(s As P ) (99)

2 2 2

(Qs $As 1P )
3 3 3

(which correspond to the randomness in the signal, noise,

and hypothesis sequences, respectively) such that the non-

empty set Os is defined as

A Qs X Q S S  (100)6 Ss- ! a2 3

and the sigma field A is defined as
0 s

I
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As  A A 0 A (101)
S 1  2 S3

The sigma field Asi is composed of subsets of 2,, and PsSSi

is a probability measure on A . The terms AS2 I AS3

I Ps 2 , and Ps3 are similarly defined for the corresponding

probability spaces. Thus, w5  is specified completely by

ws £s S 2 CQS2  andw S3EQS3

1I Let the rate parameter for the observed conditionally

Poisson process be

X(t,F;w;w ) = aI (t,"F; )X S (t, w; ) (102)
5 1 S3 Si

+ao0 (tF; S3 )X n(t, ;; w',S2)
+ ( r~;w sdfnda

The signal rate parameter, s(tprw~, 5 1 ) is defined as

86

I"



s. Str~ S!KT

-.A(t)exp - (t)X(t;W s ) 7(t;w)] R- (t)

"[ -It~ ; " , )+c(t ")] (103)

where x(t;w ) is an n dimensional random variable with
Si

domain in the probability space (Q A SPs) I c(t;W)

is a (possible) feedback control, and all other terms in

equation (103) are the same as in equation (3). The process

x(t w ) , is defined as the solution to

i'S

-(104)

dx(tw ) = F(t)x(t;w -- )dt+G(t)du(t;w s)+(r;w) (

W(t0;w ) =

to t
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where Zo(t;w) is a (possible) control input.

The difference between equations (3) and (4) and

equations (103) and (104) is that in the latter we now

specify the randomness in A s(tr;w; s ) (other than a

possible control feedback) via the probability space

(Os ,A Ps )Si Asi

There are two significant points to be noted for future

q expansion of the model. First, by using this cross product

space model, we could let other components of

X (t,r;w;w5s) be dependent on w For example, we

could model an uncertain rate parameter "amplitude" as

A(t;w s) in equation (103) where the probability space

(Q ,A s P ) is expanded appropriately to specify both

A(t;w s) and 3(t;w s) . Second, because

X(t,r;w;w s) is allowed to be a function of w we can

include feedback control in this model. One method of doing

this could be to include an additive control of the form

c(t;w) as is shown in equation (103). In a beam tracking

application, in which we are limited to a finite sized array

of photodetectors, the control c(t;w) might be used to

adjust the pointing of the detector to keep the current

estimate of the projected position (estimate of the terms

H(t)x(t;1s ) ) in the center of the array. If this were

not done, the "signal" (maximum intensity point of the

Gaussian shaped intensity profile) could conceivably "walk"

off the detector array and no further useful information
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would be observed from the signal process.

An alternate (or additional) method of control is

provided by the term c'(t;w) in equation (104). In a

beam pointing application, we can model the physical

influence on the beam position as a control input E'(t;W)

to the process dx(t;w ) where x is a relative ratherSI

q than an absolute position.

The noise rate parameter is defined as a scalar random

variable

Xn(t,;w;s) = Xn(t,;w;w s2) (105)

with domain' specified by the probability space

(Ss ,As 2,P s2). Note that dependence on (feedback

control) is allowed in this model. As noted before, the

regularity proof requires that:

t

ffA(TF;W;W s2)d3 d T  < (106)

to Y

E( n (tf,W, ; sz)<

Y CRm
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The probability space (Qs SA SP S) and the

coefficients ao(t,r;w ) and ac(tr;w ) allow us to
S 3  S 3

describe analytically the conditioning in expressions of the

form (for example)

E Es{( )AIPs (A)f( )Ps(dws) (107)

A

where (.) is an event of interest and AeA is the event
N Nt sNt

associated with one of the 2  possible sequences h.

Evaluation of equations of the form shown above are

necessary in Chapter IV to derive the multiple model

adaptive estimator equations.

Let (S3) A S3P S) be a discrete probability space

where each w S3 Es3 is associated with one of the5 Nt

hypothesis sequences. Note that at time t, there are 2
N t  N t

possible sequences, ht , j1,2, and that the

number of possible events in 2S doubles as each
S3

new measurement is observed.
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The a coefficients are defined as

7 ao(t,; ) = 0 At measurement times and
s3 locations when it is given (or

assumed) that the event at time
t was due to signal.

(108)

1 Otherwise.

-(tJw )= 0 At measurement times and
s3 locations when it is given (or

assumed) that the event at time
t was due to noise.

(109)

lOtherwise.

to t

and

a 0(t,i7ws) = ct(trws) = 1 (110)
6 3 ' 't S 3

If there is no assumption (or
given information) concerning
which process (noise or signal)
caused the observed events.
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An example will help clarify the notation. For

observation on [t0 ,t)XY , let Nt = 3 , and Z3

{(tl,,?),(t2,r2),(t3,r },to<ti<t2<t3<t . We desire to

evaluate an equation of the same form as equation (107).

The assumed hypothesis sequence associated with the event A

is, for example,

q

h 3 = {h 3 (1),h 3 (2),h 3(3)}
6 6 6 6

= {1,11,0}(1 )

= {signal at tj, signal at t2 , noise at t3}

Recall that the superscript on the hypothesis sequence is

the number of space-time events that have been observed and

the subscript is the index of sequence under consideration,
Nt

out of a possible 2 possible sequences. The associated

space-time history of the a coefficients is as shown in

Figure 6. Because ao(t,r;ws) = 0 at (ti, r) and
S 3

(t2,r 2 ) , the observed events at those times could only have
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a 1(t,r; w)
S 3

to(ti 1F1 ) (t2 ,r2) (t3,i%)

a it ;w )

to (t, rl) (t2 ,r2) (t31iz3)

6
A E h 3  ,Nt =3

Figure 6. The a Coefficients
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been caused by the signal process. Similarly, the event

observed at (t3 ,r3) could only have been caused by the

noise process. The a coefficients are specified as having

a value of "1" between measurement times because, even

though no point event occurred in these intervals for the

observed realization, a point event could have occurred.Nt

The conditioning on h. specifies only what can or can not3

U occur at the observed event times.

We now have an analytical method for modeling

conditioning on some particular hypothesis sequence. In

order to use Fishman's results, we must first prove that the

space-time point process specified on the probability space

(0,8,P(;w S ) , and described analytically as above, is

regular, conditioned on ws.

Theorem 111-7. Let (0,B,P(;w s)) be a probability

space and for each w s let U be a random point

process U :[tD,T)Xa-[t 0 ,T)XY , which is Poisson

conditioned on knowledge of ws Let the rate

parameter of the conditionally Poisson process be

X(t,r;w w S ) as in equation (102) and let

(Qs1,AsP S ) be a probability space which is defined

as a cross product of three probability spaces as

described by equations (99), (100), and (101). If

9
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(
t

ff/n(tr;w;w )dtdT < 00 (112)
ffxn S3

to Y

to -<t <

Y CRm

then the space-time point process U is regular given

S S

Proof. To prove Theorem 111-7, we must show that the

four conditions of Definition 111-4 are satisfied for the

analytical description given of (s, BsP s ) Note that

this theorem states that the point process U is regular

given wcs, therefore in this proof, w.I , s 2, and ws3

are all known events in the analytical model of

A(t,r;w;w)

(a) To show that: F.(Zi) is absolutely continuous

on R(m+l) J :

By equation (77), the distribution function is defined as
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F (Z3 ) =Pr[*T(1) Z (1), ... ,(j):izu)) 13(13

.h

We can write this in terms of a J order joint density

function. The representation is formal in that we do not

know if the density exists.

i(j) i(1

F.(ZJ) =f.. f(7(1),...,i(j))dz(1) ... di(j) (114)

G3

-00 -00

where the integrals are interpreted as

f d7(i) f ff...f *d& i d4idT (

-00 to0 -00 -0

if
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and the integral signs and differentials are nested from the

innermost pair outward. If YCRm the elemental integrals

in equation (115) are over the regions

P1 lk' (116)
I-

The density in equation (114) is the probability of

.1.(.) . .7(j) falling within some infinitesimal volume

about . This is precisely the sample function density

given in equation (50) and repeated here:

i1I:" 1

97

Sine densis v in tqundtion s fr4 tis the orm prbb t heo

pocs U 1,.,() is aldiinall Potinssome inndtistxes or

abot j . hi is precisel he sample function density eit.B h

giveni equaThore (Ref. 54:4) ifee here dniy fZ

exists. thns is gie is absluee condtosortios threspet

to R ( m + l ) j  and tihe condition is satisfied.
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(b) To show that: Pr[(ti+ l r i+ l )s(t i t)XYIB t i] < 1

w.p.1, i=0,i

Pr[(ti+l ri+l) (ti t)XYIBt i]

+1 (118)

= l-Pr[(ti+1,ri+])g (tit) XYIB t]

= -Pr[N([ti..t)XY)= 01B t .]

= 1-Pr[N([tit)XY) 0] 

where the last step is due to the independent increment

property of the Poisson distributed process. Also, from the

Poisson statistics
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4t

Pr[N([ti,t)XY) 0 = exp - ([,T;w;ws)dAdT

t Y
i

t

=,exp a. S(,; X T);~ )d-d-r (119)

t ti Yt

-ffct(T,L;Ws)Xn(T,L;O);Ws)

In order to prove this condition, it is necessary to show

Pr[N([ti,t)XY) = 0]>0. Equation (119) can only equal zero if

the exponent is infinite. Because the rate parameter for

the signal process, X s(t,r;w;w ) is Gaussian shaped
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6

l~~~f (tT;ws )X s(t'[ l)[- I~';'s d

y Rm

(120)

m

A(t)(2T)2 <C(t)

Note that the Gaussian shaped intensity profile for the

signal rate parameter yields a convenient evaluation of

equation (120) and allows us to use the Snyder-Fishman

filter results for the elemental estimators of the MMAE.

The Gaussian shape itself, however, is not necessary, as

long as the conditions of this theorem are satisfied and we

use an appropriate elemental estimator. We now need the

previously mentioned condition

4t

f fao(t,;wS3 )Xn(t, ;WWS2 dT d T < - (121)

to Y

100
I tma~aea, il nHH
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Since co(t,r;w s) and a 1(t,s;w ) each have a maximum

value of one, the entire exponent is finite for finite t.

Therefore

t
(rt > 0(122)Pr[N L it)exP[1-- ffX(T,;w;ws)cLdTj

PrEN(~t i,)X = )

Substitution of equation (122) into equation (118) results

in

Pr[(t+,,Ti+l)E(tit)XYIBt ] < 1 (123)
i

w.p. 1

(c) To show that: The point process is conditionally

orderly:

4 To simplify notation, let
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N(Lt,Th) N([t,t+At)Xc(Fr,7)) (124)

With this notation, we can write the expression to be

evaluated (from equation (75)) as

lrn

AtOPr[N(At,T) 21B 3]
PrtNAtO t]

(125)

= -Pr[N(At,T)=O I Bt]-Pr[N(At,-P)=1j Ij
4 P- -O1-Pr[N(Atjp)=0IB 3]
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lm1-Pr[N(At,-P) = O-Pr[N(At,p) =1)

I At-0Q (126)
1-Pr[N(At,T) =0)

where the last step is due to the independent increment

property of the Poisson point process. Since the pointI process is Poisson,

ii
lrn t+At

- t+ J J X(-r,"L;w;w )d,%dTr (127)

exp f (r7ww)d.'LdT
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and

J lira

At-O Pr[N(At,T) - 0]

nlim t+At (128)

=At+0O exp -f f X (T,; W; )dsc~dT

I p 0 "t c(r,p) J

therefore, when we attempt to take the limit of equation

(126), the result is indeterminate

4

1-1-0 - 0 (129)

1-1 0

In order to evaluate equation (126), we must use

- L'Hospitals rule and Leibnitz's rule, with respect to Pi
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(the lirst component of p )firsti

(130)

li- lim a PrN(At,p)=Q3 " Pr[N(At,Th=l]

=At-*O pl O

P2~0- ap Pr[N(At,PT ) O 0

e -p+e -e
et- ipSe-- i (131)

e
P 2-*

P m -0
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-At-*Q PI-)0  0e (132)

P2 -+0

where

t+At

e f f A(T,T;w;w s)d~dr (133)
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and

t+At r 2+P 2  rm+Pm

= f f f... / X(rrj+p ,&2,A3,

t r2 rm

(134)

i ... ,m; ; s )d4 m... djL dT

From equation (133), it can oe seen that

lir
0 = 0 (135)

p i- O

and the limit of equation (132) can be taken with respect to

p, and we have the desired result.
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4

lim

Pr[N(At,7)221B I
At+O = 0 (136)

The process is conditionally orderly.
q

(d) To show that: Pr[N([to,t)XY)<] = 1 for finite t

Pr[N([to,t)XY)<-] = 1-Pr[N([to,t)XY) = (137)

For the analytical model description under consideration
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([ Pr[N([to,t)XY) = n]

t n t

[ffx (Tp,;w;w S)ddT exp [-f (T,.T;w;w)ddTj (13

=t t Y tto Y" (18

!n

lim Pr[N([to,t)XY)=n]=Pr[N([to,t)XY)= co=0 (139)

SI
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and

Pr[N([to,t)XY)<-] = 1. -0 1 (140)

* The proof is complete. D

We have shown that U is regular given ws' cs . The
so

following theorem shows that, for the analytical cross

product space model given above, the space-time point

process V is regular. With this condition satisfied, we

know that a hazard function exists for V and it can be

evaluated as in equation (87).

Theorem 111-8. Let the probability spaces (Qs,AsPS)

and (Q,B,P(';ws)) satisfy Theorem 111-6. If

e

ii

S

L .. . . . " . . . . ' m ' u u u !110



(a)

C

E {,X x (t,-;Ww )P'(dwXdw )<CO
En t';W;W S2)}=Xn(t, )= f Xn tr m~S2)P( dS2)

(1'41)

and

(b) X(t,r;w;w s ) is measurable with respect to

1 [to,t) X Rm X Q X s

then the space-time point process V is regular.

Proof. To prove Theorem III-8, we must show that the

analytical description of the cross product spaces satisfies

Theorem III-I (equations (83), (84), and (85)).

* (a) To show that: If BeB and tE[t 0 ,T) then

P(B;w sB t)(W) is measurable with respect to the product

sigma field A sCB

* Consider the function (mapping):

Ii

I



I

C P:SQX Ss[O,13RI

where

P = P(B;w sst)(W)

is a set function which maps from the cross product space

SXM s  into a closed interval on the real line. The

function P is measurable with respect to AsQB if the

set

{BXws :P(B;w sBt)(w)>>al

is measurable for all ae[Ol] (Ref. 36:65). Since it

is given that BEB and, by definition of the probability

space, wsc s  (and therefore wS CAs), BXc s  is measurable

with respect to As4B (Ref. 32:71). Thus

4 P(B;slMt)(w) is measurable with respect to AseB
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(b) To show that: For each point (t,7)c[t 0 ,T)XY

0(t1 7)=E{O(t,F;w;W s)- f (t,;U; s )P(dw dw s)< (142)

The hazard function 0(t,-;w;w s) is measurable with respect

to each of its arguments. By the Fubini Theorem

= ff4(t,;w;w s)Ps(dw s )P(dw) (143)
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ff SitWS3)fXi rwwS )P 51(dw 51) (144)

S3s

+aI~ dfX~';;S)S (wS2)]PS3(dws,)P(dw)

if X~ (t)i7;w;w) is Gaussian shaped as previously

~ 9)'described, then

J X s (tp7;w'w S )P S(dws X s (tF;w) < (145)

Si

It is given that X n (t,r) < Since co(t;w S3 and

ct1(t;w )3 have a maximum value of one, we can bound 4tF

by
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0l

(tF) - st,r;w)P(dw)+Xn(t,r") < (146)

nn

The condition is satisfied.

(c) To show that: (t,F;,;w s ) is measurable with

4 respect to [to,t) X Rm X B X A S

This condition is given in the statement of the

theorem.

The proof is complete.

Condition (c) for this proof was given in the statement

of the theorem. This was done to keep the form of

X(t,r;w;ws) as general as possible to admit a large class

of functional forms. In order for this theorem to be of

practical value, ho r some discussion on this point is

in order. A rate rameter function X(t,r;w;wS) is

measurable on [to,t X Rm X B X A if it is measurable

individually with respect to each of its arguments when the

other three arguments take on any allowable value.
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Therefore, we can consider the arguments individually

providing the value of one argument does not affect the

measurability of the function with respect to another

argument. From measure theory (Ref. 18:284-287, for

example) we know that continuous functions, the sum of two

measurable functions, the product of two measurable

functions, and limits of measurable functions are allU
measurable functions. By using these results, we can

construct a large class of useful measurable X(t,r;w;w S )

functions from elementary functions.

111.6 Summary

In this chapter, the basic physical model described in

Chapter II is recast in terms of a doubly stochastic space-

time point process defined on a cross product of two

probability spaces. Several analytical tools are presented

which allow inference of useful information from the

observed doubly stochastic space-time point process. In

particular, if the observed process is regular (Definition

111-5), then its hazard function exists and the existence of

the sample function density is guaranteed. Also, a

representation theorem is presented which gives us the means

of calculating the a posteriori probability of an event in

the unobserved (OsAs,Ps) probability space given

observation of events in (,B,) . Finally, an analytical
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description of the particle beam estimation problem is

given in terms of a cross product model. The resulting

process V is shown to be regular.

Chapter II provided the basic form of the multiple

model adaptive estimator suitable for this point process

problem; however, the filter weights were difficult to

calculate from a probability density function approach. The

methods and results of Chapter III provide a means of

calculating the individual filter weights when the

analytical model meets the regularity conditions necessary

for Theorems 111-7 and 111-8. In Chapter IV, an analytical

model appropriate to the particle beam problem is presented,

the individual filter weighting factor expression is

evaluated, and the multiple model adaptive estimator

equations are presented.

1
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X

IV. The Estimator

IV.1 Introdiuction

In this chapter, the full scale multiple model adaptive

qestimator for the particle beam problem is developed. The

first section develops the a posteriori filter weights.

The general form of the multiple model adaptive estimator is

shown in Chapter II, equation (24): an estimate is

generated as the probabilistically weighted sum of outputs

of individual estimators, each based on a specific

-assumption about uncertain parameters. The same form in

notation suitable for the point process problem is given in

equation (36). To derive the a posteriori individual filter

[N

weights, Pr[h t B 1 t1 ] j = 0,1,2, ... Nt- 1 , the

representation theorem from Chapter III is used. Section

IV.3 presents the equations for the general multiple model

adaptive estimator for the particle beam problem in cross

product space terms. In this section, the estimator

development is consolidated in one location for reference.

Finally, Section IVA4 presents examples of t- estimator

equations under several simplifying assumptions. We begin

by deriving the weighting factors of equation (36).
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IV.2 The Multiple Model Weighting Factors

The purpose of this section is to evaluate the
N t

weighting factors, Pr[hj IBt] , for the multiple model

adaptive estimator described in equation (36). In words, a

weighting factor is the conditional probability that the

th Nt ,Nthypothesis h. , out of a possible possible3

hypotheses, is the correct one, given the sub-sigma field of

events up to time t. The representation theorem, Theorem

111-6, gives us the means of calculating the probability of

an event A-A given B . If we let the event A. bea een AAS t 1

the event associated with the hypothesis sequence h j

then from equation (95) we have

fL t (W;W s)Ps(dw )

Pr[hjNt Bt]= A.L (147)

f Lt(w;ws)Ps(d~s )

s

where Lt(W;Ws ) is defined by equation (93).

Since we are using a cross product of three probability

spaces to model the observed event, Lt(W;W s) is actually

dependent on the events in all three probability spaces:

Lt(W;Ws5 ;Ws; S2 ) . The hazard functions are assumed to

be of the form
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0(t,);W; S ) = ac(t,F;w S3) s (t'r;w;w s)

(148)

+ao(t,;WS3 ) n (tr;w;w )

Note that this form is very similar to that shown in

equation (102); however, for the development of the

weighting factors, we do not need to assume that the

observed process is Poisson nor do we need to assume the

Gaussian shaped intensity profile for

s (t, r; w;j) )

We only require that the process V be regular (that is, it
I

satisfies Theorem 111-8).

N
The events Aj, j=1, ..., 2 t are, by construction,

mutually exclusive and exhaustive, thus
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2 Nt

U A. (149)
3 s3

Because of this, we can expand Et(W) as

St(W) f Lt(W; s)Ps(dw s) (150)

3's3 ;U2)Ss i

f f L t(W;W ;W2;W3)P S3(dw S3)P S2(dw S2)P Sl(dw S)

Sl sZ S 3
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Nt

ff (W; L w S2w w S

S l S S2 3

(152)

- P3 (dw S 3 )P s 2 (dw S 2 )Ps (dw s l )

2Nt

f Lt(w;ws)Ps(dws )  (153)

j=1 A.
3

In equation (153), the A. notation is used to indicate3

integration over Q i XS XA. , therefore
s 1  2  3

N Nt

2 N f Lt (w;w)P (dw)
N f A

Pr[h. ti] = j=1 Al (154)
j=l Lt(w)
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I.

Lt( -)  (155)
LEt(w)

as expected.

'4 By equation (94), the denominator of equation (147) is

f Lt(;ws)Ps(dws) = Tt(w)

RS

(156)

N t
A

= 1I 4(ti,ri;w)exp -J f(TT;w)dTdT
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N t

= T [ t n(rr, r;W)] (157)

i=l

,! t]

exp L f (TT;w)d7dT

to Y

where the last step is due to the fact that there is no

conditioning on A. therefore

ao(t,r;w ) = I1(t,F;W ) = 1 (158)53 S3

We must next evaluate the numerator of equation (147)

to obtain the weighting factors. The numerator can be

expanded as
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f Lt(w;ws)Ps(dwS)

A.

23

-f f f Is ( )S)Ls (W; SlwS2S3

S1  S2 2S 3

(dw )Ps2 (dw )ps (dw s)

where I (w S) is an indicator function defined by

I € A.
1 S3 3

I (s) =(160)
W S3 0 otherwise(10

We can rewrite the integrand as
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I.(W )L (w;W L = W;
S3 t s t s )A.

b3

s =" S(t k r k;w;ws )I n, (tt, k ;w;w S2
S N.

bt

exp[-ff(i;w;w s dtdT] (161)

K qpwhere the vertical bar is read as "restricted to Ai " the

set of signal indices is defined as

Nt

[t

S. 1 k: h. (k)=1}={ki,k 2 , .. ,k q} (162)

I

and thle set of noise indices is defined as
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N

- 2 . • . . ..

qand q+p=N t Note that the value of the exponential

term in equation (161) is not a function of w . This is

because the a terms in (t , ;u);w ) only have values of

zero at points (sets of measure zero). We can therefore
substitute equation (161) into equation (159) to obtain

f L t(w;W s)P s(dw S )

A.
i

s. N
Si S 2

[I "
t

(164)
exp- ff (,T;w;w ;w )dtdT]P (dw )P (dw )

ffS1S S2 S S i

to Y
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In order to evaluate equation (164), consider the process

V- :9j5s XQS2 M3 X[t 0,t)-[t 0,t)XR
m

where there is only one possible hypothesis sequence of

signal/noise observed events; that is

P S3(A) 1 (165)

The sequence h. is guaranteed to occur. The process V.
T h

is regular because it is a special case of the process V.

which is regular. Since V. is regular, by Theorem 111-3 a

hazard function exists which is an expected value:

*.(tr;w)=j (t,r;w)=Es{4(tr;w;ws)IAo0S t} (166)

in which the j subscripts indicate association with the
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special case process V. . By Theorem 111-5, equation (94),
|3

Nt

11t (W) 11 i4 (t~ ;w)exp jf, ;dAT(167)I
1-=

Sf L (W;)p (dw (168)

jt. S 5
3

s

where Lt (W;W s ) is the sample function density for V. as

defined by equation (93):

Lt (W;Ws) =
3

Nt t

1 (t1 OF1 ie ;w;w d7%dT (169)

i=l to Y

The sure event A. determines the value of the coefficients
3
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a(t, ;ws ) and al(t,F;ws) ; therefore
a o t r S 3  3

Lt (w;w) = H ¢s(tk,r-k;w;Os)Rf n(tkr ;W;Ws )

SSi N.

It

exp [ 1 (170)
to Y

We can substitute equation (170) into equation (168) to

obtain

Lt (w) f Lt (W;w s)Ps(dwS) (171)
6 3

s
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4

-f f ' s(tkrk;;s O n(tZOT ';W 's 2

S N

' ]3

t1

,exp (ffi ,L; - ; i 1; W S2 d~dT

P S2(dw S2)PS (dw s ) (172)

where we have used the property that the integral term in

the exponential of equation (172) is independent of

because the cc coefficients of P() only have a value

of zero at points. Equation (172) is exactly the expression

we need to evaluate in equation (164). By equation (168),

we know that
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l4

Lt ( )

3t

=11 s(tk rk W)1 b(t,,,' ;w)exp  -(Tp,.';W)d-,dT

S. N. to Y

(173)

We can substitute equation (173) into equation (164) to

arrive at the numerator:

Lt(w;w)P(dw)

A.

SAA

t

= II ps(tk,Fk;w)ln(t,,r,.w)exp - (T t;w)dkdT

Sj Nj toY(174)

Substitution of equations (174) and (157) into equation

(147) results in the desired weighting factor
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II Stk-'k;w)l nti;)

Pr[h N tjgj S J N__ (175)
N t

E.EIT ;W+ s(tk r-- ; ) ;;W)
jf , n~t

,r" Nrh 15t  = J (176)

-- i=l

'I

From this expression for the weighting factors, it can be

seen that

2 t

> Pr[hjtlS t ] = 1 (176)

j=1

as discussed in the text preceding equation (155).

Furthermore, the weighting factors are recursive:
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Nt Nt
Nt h. (N)d~s(t ,rNtb)+l -h j (N)? n(tNWN;w)Pr[h. l Bt = ^_______ ____t.__•____ -__

J s(tNt,rNt ;w)+qn(t t rF *w)

Nt NN'

t t

Pr h t11Bt J

frtN St Nt+1 (177)

where the j' notation denotes the "old" sequence which is
N

concatenated with the new sequence value, h. (N to
Nt T t

obtain the "new" sequence h . This is the same notation

discussed in more detail in the text following equation

(51).N

We now have the weighting coefficients Pr[h JIB t ]

for use in the multiple model adaptive estimator equation
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0

(36). The evaluation of the coefficients is general because

Cwe did not need to specify the exact form of the hazard

function. It was only necessary that the observed process

satisfy Theorem Iii-8. In the next section, all the

equations for the multiple model adaptive estimator for the

particle beam problem are consolidated and presented.

IV.3 Estimator Equations

In this section, the results of the previous section

and chapters are consolidated and the multiple model

adaptive estimator equations for the particle beam problem
A

are presented. Only the results are listed here;

references to earlier chapters and sections are provided for

detailed descriptions and derivations.

IV.3.1 Assumptions. A conditionally Poisson space-

time point process is observed on [t 0 ,t)XR
m

. The observed

process consists of point process events from a

conditionally Poisson signal process with rate parameter

Xs(t,r;w;ws) and a conditionally Poisson noise process

with rate parameter X n(t, r;w;ws) . The signal and noise

processes are assumed independent, therefore the rate

parameter for the observed process is

I
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gI

_C

).(t,r;w;w )=X (tr;w;w )+X (t,r;w;cS) (178)

The signal rate parameter is assumed to have a Gaussian

I shape as defined by equation (103) and the noise rate

parameter is defined by equation (105). We further assume

that

I
t

' s2 (179)
9 )'o

E{X n(t,;w;w )} <
2

and that

4

d-x(t) = (t)i(t)dt + G(t)d-u(t) (180)

as in Chapter II.
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C IV.3.2 The Multiple Model Adaptive Estimator. The

multiple model adaptive estimate of x(t;w s) is given by

2Nl

2~ N t-

x(t;w ) x(t)Pr[h 1t]1)

j=O

I

where N t  is the number of observed events in [t 0 ,t)XR
m

The development of the ,,MMAE form is presented in Chapter II.

The individual hypothesis estimates, x.(t), are defined as

!3

A Ntx.(t) = E{fx(t;s1 )IBt h } (182)

where Lt  is the sub-sigma field of events up to time t
4Nt.t

and h. is a hypothesis sequence which defines the th
3Nt

entry out of a list of 2 t possible hypothesis sequences

at time t. The hypothesis sequence notation is defined in

1
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detail following equation (28).

The process x(t) is modeled as the output of a linear

system driven by unit-strength white Gaussian noise. We

observe a conditionally Poisson point process which has a

Gaussian shaped rate parameter. As a result of this model,

we can use the Snyder-Fishman filter to calculate the

individual estimates.

The general form of the Snyder-Fishman filter equations

used to calculate the x. terms is given by equations (10-

13). Since the hypothesis sequence h. N t is given (in

equation (182)), the estimate for x. is calculated by3

considering only those observed events which are caused

(according to h t) by the underlying signal process. Thus,

for each of the 2 Nt models, we calculate

d7x(t) = F(t) -(t)dt+ K(t) -H(t)X (t N(dtXd7&) (183)
R Rm

)+ c"(t) if control is included

as in equation (104)
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and

d~.(t) = F(t)E.(t)dt+.(t)FT (t)dt+G(t)G(t) (t)dt
-IJ - J -

(184)

Ji - _--j( tm -)IM) (t)N(dtXdT)

R m

where the counting integrals in equations (183) and (184)

only have nonzero value at the measurements (t,r) which:. Nt

are specified by hj to have been caused by the signal

process.

Equations (183) and (184) can also be written in

"| propagate-update form, as is commonly done for Kalman filter

realizations. Let t denote a time immediately prior to

an observed point process event and let t + denote a time

just after an observed point process event and its

incorporation into the estimate. The estimate of i(t) is

propagated by
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dx.(t) =F(t)x.(t)dt {+ c if used}

for: t - t <t- (185)

i = 1,2,..., Nt

It

Updates, due to observed point process events, are

accomplished by

x.(t) =.(t )+K(t )r-~.x (t.) 16

4i =1,2, N ..

The propagate form for the individual covariances is
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(187)

t i-i 1 t

i 1,2p ,...,

and the update expression i~s

A + A

Lj =. .(Ct T)- )11(t )E .(t7) (188)-3 -3 J-j 1

i=1,2p ... N.*

0 where
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T T
K.(t) E (t)H (t)[H(t)Y t)IH (t)+R(t)] (89

Note that we could use another (perhaps nonlinear)

model for x(t) and an arbitrary rate parameter for the

* conditionally Poisson signal process. The general form of

the MMA estimator (equation (181)) is unchanged; however,

the individual estimates of 7(t) would have to be

* Q rederived for the new model. The Gauss-Markov nature of

x(t) and the Gaussian shaped rate parameter allow us to usE

the convenient Snyder-Fishman filter.

The weighting factors in equation (181) are generated

as

SxS (tkr'k;w) H Xn(t ,rz;w )

Pr[h t
= (190)

t ~Ni,, -- .t ̂  (19o)w)

n Lxs(ti,Ti;W) + An(ti,.i;W)
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where

A - A(1)
)s (tr;w) = Es  s(t r;;s )lgt

and

"- n(t,r;-) ~~~"~~,,Igt  (192)

These weighting factors are developed in Section IV.2.

From equation (27), the covariance of the estimator is

2Ntl

2 -1
t) Pr[hjNt I

j=O

(193)
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where the individual covariances are given by the solution
N

Cto equation (184) for j = 0,1, ... 12 1

The equations in this section specify the multiple

model adaptive estimator for the (very general) form of

X n(t,r;w;w )2 given. The following section describes

several examples of the estimator's equations for various

assumed forms of X and X
s n

structure of the estimator and a sample description of the

model to match a simple particle beam tracking application.

IV.4.l Example a: Structure Insight. In this

example, we see that the weighting factors defined by

equation (190) reduce to equation (67) when the same

assumptions are made.

For the development of equation (67), it is assured

that both the signal ard noise rate parameters are

nonrandomt

Xs(tpx(t;w s );W) = Xs(t,iE(t)) (194)
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where x(t) is known, and

x n(t,r;w;ws2) = n (t,r) (195)

We can substitute these values into equations (191) and

(192) to obtain

x s (t,r;w) = Xs(t,) (196)

V ' and

xn(t,r;) = n(t,1r) (197)

We can substitute equations (196) and (197) into

equation (190) to obtain
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L

11 Xs(tk,r.,x(tk)) 1 n (t rZ)

N S. N.
P t ]h- .] (198)

N t

fl 1 -2• l ~iH s(ti,r i , x(t i))+Xn(ti, ri)

'4

Equation (198) is the same as equation (67). Thus, for the

trivial case of known X (t,r,x(t)) and X (t ,r),sn )
the full scale estimator reduces to the same form as in our

initial multiple model adaptive estimator development.

IV.4.2 Example b: Tracking Model. In this example,

we present parameters for the model which are suitable for a

simple tracking application. The proble-i is to estimate the

position of a circularly symmetric Gaussian intensity

profile on a two dimensional detector array based on the

observation of space-time point process events. There is no

feedback control in this example.
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'4

Let the point process be observed on [to,t)XR2 where

n = 2 dimension of x(t)

m = 2 dimension of observed

spatial vectors.

Xs(t,r;;w s1 )=xs(t,r ;w 1

H(t) = H = I constant

I = identity matrix

A(t) = A constant

R(t) = R = y 2 1

y scalar constant

F(t) = -I

G(t) = gI

g scalar constant
u(t) = two dimensional Weiner process t-; unit

diffusion

An(t,r; )=Xn(7)= n 7 Ey C R2

10 elsewhere (199)

where Y represents a

two dimensional photo-
detector array as in
Figure 7.

7(0) = initial conditions

Z(O) = z

The vector x(t;wsl) is a two dimensional vector output

of the linear system
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C r2

y

1 0,0 0,

Figure~ 7. ThYeeto oe

x1 (t~t] [d 1 ([r

I xl(t)dtJ dU2 (t)j
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The signal rate parameter is

X (t r~w )=Aexp{- 4r-x(t)] -I11F-7(t)1} (201)

'I- +[2

Thus, the point of maximum intensity on the detector array

is 5Z(t) and our goal is to estimate 7(t) given a sequence

4 of point process observations of the form (t,-r) which are

corrupted by point process noise.

The noise rate parameter is selected to model noise

from dark current electron emissions in a physical

photodetector. Because of the finite nature of Y, X nis

integrable on R 2 (as required in Chapter III) and there

will be no dark current induced noise events outside of the

limits of Y

Although this description of X n(t ,) models the

finite size of a physical detector, notice that X (tr;w )

is defined for all isRm throughout the development of the

estimator. If we simulate this tracking proble (on a

computer for example) we must consider this fact. One

method for dealing with this is to make the size of Y very

large with respect to the "spot size" of the signal

controlled by R When this is done, we can insure that
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( there will be an acceptably small probability of observing a

signal event where there is no detector array. Note that

this modeling concern does not change the estimator's

equation; it only affects how accurately simulation results

can be applied to a real world system and how closely any

calculated error statistics match the real world system

q performance. A second method is not to allow any "signal"

point process observed events outside of the subspace Y.

This would involve a modification of the individual

estimators to include the edge effects from the disallowed

regions.

The expression for the estimator is given by equation

(181) and the individual hypothesis estimates, x , are

given in differential form for j=O,1,2, ... , Nt-i by

dxj(t) = -x.(t)dt + t ]N(dtdk) (202)
R2
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d_.(t) = -2A(t)dt+g2 Idt-I. j (t) _Ej (t)N(dtXdT) (203)

R 
2

K.(t) = .(t)[2j(t)+y 2I] - (204)

The weighting factors are given by equation (190) where

I(tir i = Ps (ti,Fi,E)f (TIBt)dC (205)

42

R2

When the first point process event is observed at

(tr) , we have
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Pr ~A 'B - X(t, F1 ) (206)1

Pr[h' (207

it

Note that

Pr[h'Ist + Pr~h'18] (208)
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This is expected since there are only two possible

hypothesis sequences at time ti and one or the other must

be correct.

At this point, it is useful to introduce a superscript

for x which is similar to that used for the hypothesis
CNt

sequence notation. We let xj (ti , ) be the individual
a m Nt

estimate of x at time ti, assuming that h. is the

correct sequence. The superscript specifies that this value

for x is evaluated after incorporation of the observation

numbered Nt . Note that j can take on values in the set

0,1,2, ,2Nt 1  and that iN t , The same superscript

can be assigned to the individual covariance values:
A Nt
Z. (t). This additional notation is necessary because the-3

( growing number of hypothesis sequences czuses the subscript

indices to change as each new data point is observed. This

can be seen in the rest of this example.

With this notation, the individual estimates for x0

and XI (in differential form) are given by

dxo(t) - xo(t)dt (209)

to t - t-
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dxl(t) =-x jdt (210)

to t t7

A1 + (213)x1 (t) x~ 1 + 1 t)r- 1 t) 21

.15



Kit E'1 [It)y 1 (214)

I
:Al

Note that we did not need to calculate dEO(t) explicitly

for the estimate of x(-), although i~t is necessary for

1 calculation of the overall covariance of the estimator.

When the second point process event is observed at

(t2 ,r2 ) ,the weighting factors are

2X nCt ,i).Xn (t2 ,F2) (215)
Pr[h IB)=nn
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Pr[h,11 t) n As( 1 ~ t, (216)

Ph2I = A S(ti , r1) A n (t2,F2)(274rhl t A27

2 X (ti ,ri)X(t 2 ,r2)(28
Pr[h3jB t) s A (28

where

2

A 11 [A sA (ti i )+A n(tif dl.) (219)

156



Note, again, that the weighting factors sum to one.

This example displays how the MMAE algorithm progresses

as each new space-time point process event is observed. In

general, to advance from time t+  to time ti + ti-e
i i+1

estimator must:

(a) For j = 2i1 down to

-Nt(t+) to .Nt
(1) Propagate j t j (ti+1

N + ANtt+ tt

(2) Propagate - (ti  to E-2j i+l-)

(b) For j = 2 i+i- down to 0:

If j is even, then (it was a noise event)

''N t t+ = :jNt (tl-l
(1) Let xj (ti+l) = +1

(2) Let E..Nt ( + = Nt (t
3 i+l) j i+1)

Else (it was a signal event)

(3) Let xNt(t i+l ) = j-lt(t.+l)

^ Nt(t -+N t+
(4) Update x. t to x. t( )

(5) Let E.Nt(t +l) = - Nt (ti+l)
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6

(6) Update EN~t to Nt( t+i)

(Note the changing subscripts and the doubling of the number

of active filters)

(c) For j = 0 to 2+ -1:

| -1

Calculate Pr[h. i i11

(d) Calculate x(te+N)

Figures 8 and 9 depict the storage requirements and

data movements of the x vector for one iteration of the

above algorithm. Figure 8 shows the doubling of the memory

required as the state of each elemental filter is propas)ated

to the next event time in step (a). In Figu.-e 9, the update

phase, step (b), is shown. The elemental covariance

matrices are propagated and updated in exactly the same

manner.

The complexity of the expressions and the expanding

number of individual filters strongly motivate the

simplifications to the estimator discussed in Chapter V.
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Before step (b) After step (b)

- Update x 5

x 4  /x 4

x3 Update x

-, Update xi

Figure 9. x storage before and after algorithm step (b).
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IV.5 Summary

In this chapter, we have developed the weighting
N

factors, Pr[h Ist] for the multiple model adaptive

estimator presented in Chapter II. The development is

possible because of the cross product space modeling

concepts and results of Chapter III, particularly the

representation theorem. The multiple model adaptive

q estimator equations are consolidated in this chapter and

several examples are given to provide insight into the

estimator's structure and calculations. Simplifications to
I

the estimator are discussed in the next chapter.
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V. Filter Simplifications

V.1 Introduction

The multiple model adaptive estimator developed in the

q aprevious chapters provides the minimum mean square error

estimate of a vector x (which is not directly observable)

from observations of a point process signal in additive,

* independent point process noise. The estimator consists of

elemental filters, the number of which grows exponentially

with each new observed space-time event. In addition, the
AA

calculation of the Xs  and Xn terms of the weighting

probabilities (equation (175)) is, in general, complex.

These two factors motivate the simplifications developed

here.

In this chapter, we develop simplifications to the

multiple model adaptive estimator which require less

computation than the methods of the full scale estimator.

The simplified filter does not have a growing requirement

for either memory or computation as additional space-time

events are observed. The simplifications result in a

suboptimal filter; however, they are based on an

understanding of the structure of the full scale estimator

and a brief discussion is given of the conditions under
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which these simplifications are appropriate.

STwo areas are considered: calculation of the

probability weighting factors, and limitation of the

exponential growth of the number of elemental filters. We

begin by considering calculation of the weighting factors.

V.2 Weighting Factor Simplification

The form of the general weighting factors as, shown in

equation (175), is very straightforward. The key to the

complexity (or simplicity) of calculation is in the
A ^

evaluation of the terms s and n
^A

The term is defined as

A

^ - (220)
s (t,r;w) = Es {qs (t,(r;2;2 s ) I )t

and 'n is defined in a similar manner. The difficulty in

calculating these two terms is highly dependent on the model

of the underlying physical process. At one extreme, if we

E make the assumption that observed process is Poisson with

known signal rate parameter

(t,r;w;s) = (221)

and if x(t) is known, then
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-[X , ( , ;): (t,r,x(t)) (222)

because s is not dependent on W " At the other

extreme, we could, conceivably, formulate a model for which

there is no closed form solution for s and n"

A more useful case is that of the particle beam problem

where Xs is defined by equation (3) and A n is a

deterministic function of t and r. (A random noise rate

parameter is allowed and useful for the beam problem. We

* are given the form of Xs and there are significant

difficulties in computing Xs Because we have considerable

freedom in the form of Xn n only simplifications to the
A

SA 5  calculation are considered here.)

Additionally, let there be no feedback for this

example. Since Xn is not random

iA

X (t,i) = n (t,i) (223)

and we must evaluate

A .Ntft = Xs(t T)ffjz t)dg (224)

R n

where is the dummy variable for x(t) and f(CIZNt)

is the probability density function of i(t) given the
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measurement history. We can use Bayes' rule to obtain

N N
rNt"Nt f (z tI T) f(7)

Sf(EIZ ) =- (225)
i",. f(zNt)

in which f(Z ) is the sample function density of the

q observed process and f(T) is the probability density

function of i(t) propagated from time t 0

From the definition of a sample function density, we

can write

f(Z tj ) 
^

( Nt = exp - (T, , )- (T,4)ddT
Nto Y

]] (226)

to Y

where ¢AX~,, ) +k~, ) ad
= (tr, ) + X (t r) and 9 is the given value

of R(t) in the numerator probability density function in

equation (225).

We now make the assumption that Y=Rm . To satisfy the
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regularity conditions, Xn (t,r) must now be integrable

m Mn
over R m. This assumption, that Y=R is not too

restrictive, however, because we can usually redefine

X n (t,F) to be integrable over some region of interest and

zero elsewhere.

As a result of this assumption, we can simplify

equation (226) further. Consider the term

t t

f f p

to Rm to Rm

(227)

t

f f(TA', [)-E {¢(TA,T)Iz t}d dTC

to

We can integrate the terms separately and interchange the
I

order of integration and expectation by the Fubini theorem

to obtain
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t

ff

to 
m

-
(228)

:. Because the assumed Gaussian shape of Ast ,, ) results

tS

i in a tractable integration, we can evaluate the integral

Rm

Rm 
Rm

m

i t A(t)(2d) siaR(t)+f An(t,t)d T (230)

Rm

4

where the last step follows from equation (120) and the fact

that no conditioning on a particular hypothesis sequence is

given, therefore
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aCo(t;w ) = alC(t;w ) = 1 (231)
S3  5m3

m

Note that A(t)(2r)2 1 i(t)li is not a function of to or

WS ) even if feedback control is included in the manner

previously described. For the assumed Xn

n(t,)d = Es{f Xn(tt)d iZ t } (232)

Rm Rm
i

therefore

t

*-¢ dT d- = 0 (233)

to Rm

and equation (226) reduces to

r~ N rt(T, e]
f(ZNt) exlnj ~ N(dT X d,%)]

(234)
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From the definition of a counting integral, we can write

equation (234) as

N1 1

(Z t  Nt 0(tiri, g)

If(zNt) i=l 0(ti, Fi) (2-05)

where the index, i , corresponds to the observed point

process events {(1), z(2), ... ,(i), ... (N t)}

By substituting equation (235) into equation (225) and

equation (224), we have

Nt

s(t,) (ti i )

I

(236)
Nt

f JAs(t, r,) N 1(tiri,)f(T)dT

Rm i=1
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Equation (236) is, in principle, solvable, however it

requires an increasing amount of calculation as more point

process events are observed. The order of the polynomial in

(which must be solved at each event time) is Nt+1 and

the product of 4 terms in the integral increases by one at

each observation time. In addition, fQ) is the Gaussian

probability density function for 7(t). The covariance of

this density increases substantially as the density is

propagated forward in time. This will eventually lead to

numerical problems in an implementation of the estimator.

Due to these difficulties in evaluating Xs for this

example, consider the following simplification:

q ) To evaluate X (tiri ) take the estimate, x(t 1 _)

of f(t iil and propagate it forward in time to ti.

Use this propagated estimate, x(t i ) to evaluate

equation (3) to obtain a value for As

Two points should be noted. Firs,, since equation (3)

is not linear in x(t) in general E{X s'(t))} will not

be exactly equal to s (E{ (t)}) , and it is the latter form

we are using in this simplification. Second, since we are

propagating an old estimate of x(t i~ 1 ) to use at time

ti , it is important that we use an accurate propagation

model. If the assumed model of the underlying process

(equation (4)) has characteristics different than those of
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the actual physical process, then we would expect this

simplification to result in poor performance due to the

inaccurate propagation. We have assumed perfect knowledge

of the dynamics of the underlying physical process

throughout this research. Thus, this simplification is

reasonable.

V.3 Limitation to a Fixed Number of Elemental Filters

In this section, we consider a method of limiting the

exponential growth of the full scale multiple model adaptive

estimator so that (after the startup of the filter) there is

always a fixed number of elemental filters. The overall

method is to consider only observations from a finite data

Op window.

Let D be the "depth" of the algorithm where the depth

is the number of the most recent point process observed

events which are explicitly included in the calculation of

the elemental filter estimates. If D events are

considered, then there are 2D  elemental filters and the

number of filters is constant. As each new point process

event is observed, we must eliminate the "oldest" observed

event and incorporate the new event. Three methods for

4 accomplishing this are discussed in the following sections.
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V.3.1 Method One: Re-initialization. The first

method, called re-initialization, restarts the entire

multiple model adaptive estimator each time a new point

process event is observed, which would result in more than

2D  elemental filters. The now event is added to the set of

observations considered in the algorithm and the oldest

observed event is discarded so that there is a maximum of D

u observed events explicitly present in the M1MAE calculation.

The algorithm for the re-initialization rethod is as

follows. Recall that Nt  is the number of point process

events in the interval [t0,t)

(a) For Nt. D

Operate as a full scale MMAE filter as described

in Section IV.3.

(b) For Nt. > D

(1) Re-initialize the filter by letting

*, tiD) be the new initial condition at

time tiD.

(2) Propagate and update the elemental filters0
from time tiD to time ti

(3) Calculate x(ti ) as a weighted sum as

* described in Section IV.3.
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Even though only the most recent D observations are

explicitly included in the calculation, the older observed

events influence the value of x(tiD . Thus we fix the

number of elemental filters by a data window concept but the

entire measurement history is still considered in the
A

calculation of x(ti )

A major disadvantage of this method is that the entire

set of 2D  elemental filters must be propagated over D

inter-event intervals and the updates due to D events must

be incorporated for each newly observed point process event.

V.3.2 Method Two: Strict Window. The second method,

termed "strict window", completely disregards all observed

events except the most recent D events. This is

accomplished by assuming that all events prior to the most

recent D events were caused by noise. The algorithm for

the strict window method is as follows:

(a) For Nt. D
1

I
Operate as a full scale MMAE filter as described

in Section IV.3.

4 (b) For Nt. > D
1

(1) Retain only the (2 D)/2 elemental filters

from the lower half of the hypothesis

sequence tree at time ti 1
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Figure 10. Strict Window Method

(2) Propagate the (2 D)/2 filters to time t.

and update them to obtain 2 D  elemental

filters.

(3) Calculate x(t) as in Section IV.3.

The strict window method is depicted in Figure 10 for

the sample case of D=2. The bottom hypothesis sequence,

h 0 , is that which assumes all observed events are due to

noise. Because of this, we do not need to re-initialize,

repropagate, or re-update all 2D elemental filters as each

. new event is observed; the calculations have already been
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performed.

A major disadvantage of the strict window method is

that the "old" observed point process events which are

outside the strict window are completely ignored. They have

no effect on the value of R(ti) and thus we are not

gaining information about x(t i ) from the measurement

history from time to to time ti._D A. second

disadvantage of the itrict Window method is that it relies

completely ol the filter's internal model of the dynamics of

the underlying process for the time interval prior to the

data window. This could cause serious errors if the

filter's model were not correct.

quo tV.3.3 Method Three: Best Half. The third method,

termed best half, fixes the number of elemental filters,

uses information about x(t i ) from the entire measurement

history as in method one, and retains the efficiency of

calculation as in method two. The best half algorithm is as

follows:

(a) For Nt D

Operate as a full scale ,MMAE filter as described

in Section IV.3.
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(b) For Nt > D

(1) Calculate:

2 -1
N

2 D

and

Propagate the upper half of the hypothesis

sequences to time t. and update them with

the observation at time t.
i

Otherwise:

Propagate and update the lower half.

The best half algorithm is shown in Figure 11 for the

case of D=2. The solid lines depict the propagation and

update paths when the upper half is the Most PrcLtble set of

hypotheses. The dashed lines depict the L..ropagation and

update paths when the lower half is the most probable set of
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Figure 11. Best Half Method

hypotheses. Note that if the lower half is chosen as most

* probable, then the propagation and update steps for that

observation are identical to those of the strict window

method. In essence, the best half algorithm makes a final

decision at time ti  as to whether the event at time tiD

was caused by signal or noise. Because the algorithm can

select from either half of the set of hypotheses, the entire

measurement history influences x(ti). In addition, since

the algorithm selectively retains half of the possible

hypotheses, it is not necessary to re-initialize,

repropagate, or re-update all 2 D elemental filter over D

4
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inter-event intervals each time a new event is observed.

Due to its efficiency of calculation and consideration

of the entire measurement history, the best half method is

recommended as the best means (for the three methods

considered) of limiting the estimator to a fixed number

of elemental filters.

V.4 Summary

Two major areas of simplification for the MMAE

algorithm are addressed in this chapter. First, the

complexity of evaluating the weighting factors is reduced,

in Section V.2, by approximating Xs with an estimate of

Xs based on the previous observed point process events.

This simplification is reasonable due to the assumed Poisson

statistics of the signal process and the assumed perfect

knowledge of the dynamics of the underlying process.

Second, the exponential growth in memory and calculation

required is avoided by using data window concepts to keep

the number of elemental filters fixed. Three possible

methods of achieving a fixed number of filter are discussed

and the "best half" algorithm (Section V.3.3) is recommended

due to its relative efficiency of calculation and

incorporation of the entire measurement history.

Results of Monte Carlo simulations of a multiple model

adaptive estimator using these simplifications are presented

in Chapter VI.
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VI. Simulation Results

VI. Introduction

The results of a Monte Carlo simulation of the

simplified multiple model adaptive estimator are presented

in this chapter. All of the results are from an estimator

implemented using the approximation for calculation of

(Section V.2) and the Best Half method for limiting the

estimator to a fixed number of elemental filters (Section

V.3.3). These simplifications were made to ease the large

f computation and storage requirements of the full-scale

estimator, as discussed in Chapter V.

The goal of these simulations is to determine the

trends in the error of the estimator as several of the major

parameters are varied and also to investigate the

sensitivity to these parameters. Although the actual values

G used for the parameters are appropriate for a tracking type

application, they are not taken from an actual tracking

problem. Therefore, the error performance results are

useful as a relative measure of performance as various

parameters are changed rather than as an absolute measure of

the estimator's performance for a particular application.

In Section VI.2, the specific model used in this
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simulation is described. Section VI.3 contains some

preliminary results including sample track plots and the

sensitivity of the estimator to the number of runs in the

Monte Carlo simulation. In Section VI.4.1 through VI.4.6,

the sensitivity of the estimator to six major parameters is

shown. Section VI.4.7 contains results of several

simulations to test the ability of the estimator to acquire

the true value given poor initial conditions. An initial

lower and upper bound on the performance of the estimator

are given displayed in Section VI.4.8. Some other

simulation considerations are discussed in Section VI.5

including the effects of mismatched models and two suggested

methods of dealing with the mismatch.

VI.2 The Simulation Model

The model described here is of a one dimensional

tracking application in which there is no feedback control.

Let X be defined as in equation (3) where

A(t) = 1
(237)

H(t) = 1

R(t) = R (scalar)

Let the process x(t) be defined in differential form by
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equation (4) where

Cn
,(t) = x(t)eRn

n=1

G(t) = g (scalar) (238)

1
F(t) -

and where (t) is a one dimensional Wiener Process of unit

diffusion.

Let the photo-electron event detector be modeled as a

10 centimeter (cm) interval on the real line centered about

zero. Thus r and x have dimensions of centimeters and

the dimension of R is centimeters squared.

We define the noise rate parameter as

Xn(t,9r;w s x n -5cm < r < 5cm

(239)

0 elsewhere

This form is selected to model'point process noise events

caused by a uniform dark current mechanism in a continuous

detector over the interval -5cm<r<5cm. A simple random X

case is considered in Section VI.4.1.

181



All of the simulations are made over a 100 second time

interval. For this one dimensional case, the expected

number of signal events is proportional to the area under

the Gaussian shaped Xs function and the expected number of

noise events is proportional to the area under the Xn

function defined by equation (239). In the simulation data

that follows, the signal to noise ration is defined as

SNR A *TT (240)
n

where L is the length of the detector. The numerator of

equation (240) is the expected number of signal point

process events per unit time interval and the denominator is

the expected number of noise point process events per unit

time interval. Thus, the SNR for this point process model

is the ratio of the expected number of signal events to the

expected number of noise events.

VI.3 General Results

Figure 12 shows the true value of x and the output of

the multiple model adaptive estimator for one 100 second
I

simulation of the filter. The true value of x is

displayed by the solid line and the broken line is the
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filter's estimate of x The values of the various

parameters are listed on the figure. In all of these

figures, the expected number of signal point process events

is 100 unless noted otherwise (as in Section VI.4.2). This

sample run was made by passing to the filter the true

initial conditions, x =5cm. The smoothness of x with
0

respect to x is inherent because x is a weighted sum of

up to eight elemental filter estimates, and because the

filter is given the exact dynamical model for x

Figure 13 shows the ensemble averages over 50

simulation runs of x and x for the same set of

parameters and initial conditions displayed in Figure 12.

The ensemble averages of the error statistics, for this 50

run example, are shown in Figure 14. The solid line in

Figure 14 is the ensemble average of the error, where the

error is defined as x-x The two irregular broken lines

are the ensemble averages of the error plus or minus the

standard deviation of the error. The two relatively smooth

dashed lines are plus and minus the square root of the

filter variance. The filter variance is the filter's

estimate of how well it is performing. Of importance here

is the fact that the filter's estimate of its error is

similar to its actual performance and the filter variance

neither diverges nor goes to zero.
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The smoothing of the data, as more simulation runs are

made, is typical of Monte Carlo simulations. A pertinent

question is, how many runs are sufficient to give accurate

performance data without expending an excessive amount of

computation time. One method of addressing this question is

to vary the number of simulation runs for a fixed set of

input parameters and observe the error statistics. As more

qruns are made, the error statistics should converge to a

final value. The results of this analysis are shown in

Figure 15. In this figure, the number of runs is varied

*l from two to 100 and the root mean squared (RMS) error at

time t=50 seconds is plotted. The RMS error is chosen, as

the measure of performance in this (and subsequent

sensitivity tests) because it gives a measure of the error

from the true value regar.,-ess of sign. If we used the

absolute error, a positive error on one run could canccl a

negative error on another run, resulting in an incorrectly

low ensemble average. The time for sampling the error (t=50

seconds) is chosen to minimize the effect of the filter

* startup on the performance results. In Figure 15, we are

not interested in the actual value of the RMS error.

Instead, we are looking for a point beyond which there is

4 little change in the error. The value of the error is

erratic for numbers of runs less than 20. For 20 or more

runs, there is little change in the final RMS error. Based

1
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on this, the plotted results in all subsequent sections are

for Monte Carlo simulations with ensemble averaging over 50

bruns.

VI.4 Parameter Sensitivity Results

In the following sections, the sensitivity of the

estimator to changes in several of its major parameters is

investigated. The general method is to vary one parameter

while keeping the rest constant. The performance measure

for evaluation of the sensitivity is the RMS error at time

t=50 seconds. (The acquisition results are measured at

t=16 seconds as discussed in Section VI.4.7.) In all cases,

the number of Monte Carlo runs is 50. We begin by looking

at the effect of the noise strength.

VI.4.1 Sensitivity to g. The parameter g is the

square root of the strength of the white Gaussian noise

driving the dynamics of the unobserved process x . The

lower curve in Figure 16 shows the performance of the

estimator as g is varied from 0.01 to 1.0 cm. The trend

is as expected; as the dynamics of x increase, the

ability of the estimator to track the changes diminishes and

the RMS error increases.

The upper curve in Figure 16 shows the effect on the

error of a random A . The value of Xn in equation (239)~n'

is calculated from the SNR and the expected number of signal
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point process events. For the random X case we let X"n n
be a uniform random variable on [0,2 n]  and a singlein

realization of X " is used for generation of the noisen

point process events for a single run of the random An

simulation. Note that the realization is used for the

entire run and a new value is selected for the next run.

The estimator uses the value An for calculation of An.

This procedure is chosen as a worst case condition; very

little knowledge is assumed by the filter about the An
process and no actual estimation of An is performed.

As can be seen from Figure 16, the RMS error increased

for the random noise rate parameter case, but the increase

is very small compared to the actual value of the error.

For this set of parameters, the estimator is relatively

insensitive to uncertainties in An •

VI.4.2 Sensitivity to Expected Number of Signal

Events. In Figure 17, the RMS error is plotted versus the

expected number of point process signal events. As might be

expected, as more information is available to the estimator

from the signal process, the RMS error goes down. The trend

is actually rather mild from signal counts ranging from one

to 500. If the estimator only receives one signal--caused

event in 100 seconds, then it must rely heavily on its
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internal model for the dynamics of the x process. As

(F described before, we have assumed perfect knowledge of the

model. It is expected that the RMS error would be muchK, larger at the low count rates if the dynamical models of the

true process and the filter were mismatched.

VI.4.3 Sensitivity to T. The sensitivity of the RMS

error to T is depicted in Figure 18. As can be seen,

there is a strong trend toward increased RMS error as T

becomes larger. When T is large, the dynamics of x

depend proportionately more on the driving noise source and

* there is less restoring action due to the F(t)x(t)dt term

in equation (4). This allows errors between x and x to

persist for longer periods between signal induced point

4 process observation. When T is small, any errors caused

by the driving noise in eqaation (4) are rapidly reduced as

the output decays to the steady state value.

VI.4.4 Sensitivity to SNR. Several SNR sensitivity

tests were made for parameter sets similar to those shown in

Figures 16 through 18. In all cases, there was virtually no

effect on the RMS error, even for SNR values as low as 0.01.

The SNR sensitivity results shown in Figure 19 were

obtained by setting T and R to relatively large values

(thus tending to raise the overall RMS error, see Figures 18

and 21) and by giving the multiple model adaptive estimator

poor initial conditions. The trend displayed in Figure 19
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is as expected; the RMS error is lower for larger values of

SNR. Of particular interest is the fact that the worst RMS

error is only 0.75 cm for an expected signal to noise count

ratio of 0.1 . That is, one signal event is expected for

every 10 noise events. It is expected that the RMS error

would increase more rapidly at low SNR values if the true

and filter models were mismatched.

VI.4.5 Sensitivity to D. The sensitivity to depth,

D , is shown in Figure 20. Note that the error axis scale

on this plot is expanded and the variation in RMS error over

a depth range of one to eight is very small. This suggests

that if the model of the underlying proccss is well known

then it may be possible to consider only the most recent

observed event and obtain acceptable performance.

VI.4.6 Sensitivity to R. The sensitivity to R (the

dispersion of the Gaussian shaped Xs function) is

displayed in Figure 21. The performance indicates that

there are specific tuning considerations for R for a given

set of parameter values. As R becomes very small, it

appears that valid signal events are deweighted too heavily

due to the narrow shape of Xs- At the other extreme, when

R is large, noise induced events near the signal source are

not deweighted strongly enough. This characteristic curve,

as R is varied, can also be seen in Figure 24.
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VI.4.7 Acquisition. A final set of parameters was

c selected to test the ability of the estimator to acquire the

true x value given inaccurate initial conditions. In all
of the following cases, x° 5 and x =0

0

Figure 22 shows the ensemble average of x and x for

the relatively small values of R =0.2 and E0 = 0.1

The performance is very poor until the true x value decays

to a region close to x. The acquisition can be greatly

improved by setting R=2 and E0=10. These results are

shown in Figure 23. Under the new conditions, the estimator

quickly acquires the true x value and tracks it.

The RMS error performance versus R for these two

values of Z0 is displayed in Figure 24. Note that the

values plotted are for t=16 seconds to insure that error in

the acquisition region is being measured. Both curves show

the characteristic tuning sensitivity to R as in Figure

21. The upper curve is the performance when the multiple

model adaptive estimator has a high confidence in its

initial conditions. The lower curve is the performance for

the low confidence case.

VI.4.8 Performance Bounds. The estimator's RMS error

versus square root of noise strength is plotted in Figure 25

along with an upper and lower bound on the RMS error.

The lower bound on peiformance was obtained by

operating the estimator with only signal observed events,
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corresponding to the case in which the adaptive estimator

C perfectly deciphers which events are due to signal and which

are due to noise. This was accomplished by setting the

SNR = 106 in the input parameters to the simulation.
I NXThus, there was almost never a noise event and the RMS error

displayed in the lower curve is the best possible for the

simulation parameter set shown.

An upper bound on performance was obtained by operating

a single Snyder-Fishman filter against the same noisy input

data for the same filter parameter set. Recall that the

Snyder-Fishman filter accepts each observation as having

been caused by tile signal process.

As can be seen in Figure 25, the RMS error of the

multiple model adaptive estimator (with the simplifications

described in Chapter V) matches the lower bound on the error

for values of g<0.1 (square root of noise strength).

Above this value, the RMS error of the simplified estimator

is greater than the lower bound, but in all cases it is

better than the performance of the Snyder-Fishmar. filter. A
figure of merit which takes into consideration F(t), G(t),

and Q(t) is the square root of the steady state covariance

(SS/HMS) of x(t). For this one dimensional simulation

example, the RMS value of the steady state variance is

/-9-g72 . In terms of the SS/RMS, the RMS error of the

multiple model adaptive estimator matches the lower bound

for SS/RMS < 0.3162, and the error is greater than the

lower bound for larger values of SS/RMS . For the parameter
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set shown in Figure 25, SS/RMS = 0.3162 for g = 0.1 and

SS/R!S = 0.6324 for g = 0.2 . The significance of this is

that as the SS/RMS value becomes larger than the "disper-

sion", R, of the signal rate parameter, the multiple model

adaptive estimator's error is greater than the lower bound.

For values of SS/RMS less than R , the estimator essential-

ly makes perfect decisions as to which events were caused by

signal and which were caused by noise.

Note that in the MMAE curve and the Snyder-Fishman

curve, the expected signal to noise count ratio (SNR) is

4 one; there is one expected noise event for each signal

event.

VI.5 Other Simulation Considerations

lo As mentioned before, all of the simulation results

shown in this chapter are based on knowledge of the true

dynamical model of R(t) Although the performance levels

will change, in general, with mismatched models, the trends

displayed in these simulations should still be evident.

A model mismatch could easily arise for several rea-

sons. For example, we may not know exactly how to model the

dynamics of x(t) or we may wish to approximate a known

model with a Simpler model to reduce the computational load

of the elemental filters.

One method to compensate for a mismatch is to add

pseudonoise to the elemental filter models (Ref. 27 vol.

1:224). This is a common technique in Kalman filter tuning

and has the effect of reducing the filter's confidence in
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its own model. A second technique which may be useful is to

impose an artificial lower bound on the elemental weighting

( factors (Refs. 2,27 vol.2). This would have the effect of

putting more confidence in the less likely hypotheses; the

overall estimate would be more heavily influenced by the

elemental filter outputs associated with these less likely

hypotheses. In general, this will tend to increase the

error over that obtained when the model is known exactly;

however, it may prevent a catastrophic failure in which the

estimator "locks" onto a completely incorrect hypothesis

model.

VI.6 Summary

In this chapter, a one dimensional model is specified

for a tracking application in which there is no feedback

control. Simulation results are presented based on the M iMAE

simplifications of Chapter V. The RMS error performance

sensitivities to the major parameters of the estimator are

presented and discussed.

The results are indicative of the overall RMS error

performance of the multiple model adaptive estimator and of

the performance trends as various parameters are varied.

This simplified filter implementation shows excellent acqui-

sition and tracking properties when the various filter pa-

rameters are tuned to the underlying process of interest.

This is particularly notable considering the low data rate

of the signal and the low expected signal to noise count

ratios expected.
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VII. Conclusions and Recornn'endat ions

VII.1 Conclusions

The goal of this research was to develop an estimator

structure for the particle beam problem which is optimum,

according to some appropriate criterion, and which i~s

insensitive to point process noise corruption in the

measurements. The multiple model adaptive estimator,

presented in Chapter---I-, provides the minimnum mean squared

error estimate of the underlying process of interest. When

the models are defined as separate sequence hypotheses, the

estimator can reduce the effect of noise on the estimate.

The development is valid for any point process signal in

point process noise; it does not rely on the assumed

conditionally Poisson statistics of the particle beam

application which motivated this research. The full scale

4 estimator does require an exponentially growing number of

individual hypothesis filters.

The cross product space modeling concepts of Chapter

III provide a means of calculating the individual filter

weighting factors. This development is also valid for a

general point process signal in point process noise

application as long as the regularity conditions are met.
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The specific analytical model for the particle beam

application meets the regularity conditions. The cross

product space modeling concepts allow feedback from the

observations to the model, thus providing a way to define

control inputs.

The specific expressions for the estimator suitable for

the particle beam problem are developed in Chapter IV. The

examples presented provide insight into the structure of the

full scale estimator.

The simplifications to the full scale estimator

presented in Chapter V result in a suboptimal filter which

has greatly reduced requirements for calculation and

storage. The approximation for the signal rate parameter

( , estimate is appropriate for the particle beam problem when

the model of the underlying process is known. The use of

data windowing to stop the growth in the number of elemental

hypothesis filters is applicable to the general point

process multiple model adaptive estimator. Three methods

are proposed to implement the data window concept. The

"Best Half" method is recommended because it limits the

growth, it implicitly includes information from the entire

measurement history, and it is relatively simple to

4 implement.

The simulation results of Chapter VI show that the

suboptimal filter (using the simplifications developed in

Chapter V) is extremely good at reducing the error caused by
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point process noise. Performance trends are demonstrated as

several of the parameters of the filter are varied. The

performance degrades slowly, even at very low signal count

rates and very low signal to noise count ratios. It is

expected that the performance would degrade more rapidly if

the estimator had inaccurate knowledge of the dynamics of

the underlying process.

VII.2 Recommendat ions

There are several related areas of research which could

provide immediately useful results. First, it is

recommended that a method of predicting the error of the

multiple model adaptive estimator be developed. Equation

( ' (193) provides the means of calculating the covariance of

the full-scale multiple model adaptive estimator; however,

the filter covariances of the elemental Snyder-Fishman

filters depend on the space--time observations, as do the

calculations of the weighting factors. Both of these are

required for calculation of the overall covariance of the

multiple model adaptive estimator. Currently, only

simulation techniques provide a means of determining

performance.

The second area of recommended research is in the

convergence of the estimator. The key question to be

determined here is whether the full scale estimator

converges to the correct hypothesis sequence, and how rapid
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the convergence is. The information theoretic ideas of

Baram (Ref. 6), and Hawkes and Moore (Refs. 15,16) appear to

provide promising avenues of research.

Another area which could provide immediately useful

results is in the definition of the stochastic optimal

controller for this point process problem. The cross

product space modeling ideas allow the necessary feedback

control; however, the specific optimum form of the control

is not addressed in this dissertation. A natural follow-on

topic is the investigation of a separation theorem for the

optimum controller, or perhaps the effects of forced

certainty equivalence (Ref. 27 vol. 111:17).

The final research suggested is to explore the effects

of imperfect knowledge of the dynamics of the underlying

process (model mismatch). As described in Chapter Vi, the

estiriator simulations were implemented with perfect

knowledge of the dynamical model. A mismatch would

certainly degrade the performance of the estimator. The

extent of the degradation is of great importance in cases

where a simplified model is desired due to the complexity of

the true model, or where there is a lack of accurate

knowledge about the true model.
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Appendix A

In Chapter III, a cross product space model is

developed and regularity results from Fishman (Ref. 11) are

qused to provide the means of calculating the weighting

factors for the multiple model adaptive estimator. As

described previously, this approach results in calculation

of the elemental estimates through the use of the Snyder-

Fishman filter and a simple weighted sum to calculate the

overall estimate. The penalty of this method is the

exponential growth of memory and calculation time

requirements for the full-scale estimator.

The regularity results of Chapter III, along with an

It6 diffusion differential rule, allow direct estimation

of the process R(t). B3y "direct estimate," we mean an

expression for x(t) (perhaps in differential form) which

does not use multiple model adaptive methods. The advantage

of this is that there is no exponential growth in memory or

calculation time requirements due to an expanding number of

hypotheses, as in the mult 4ple model estimator. The

disadvantage to the direct method is that it requires

evaluation of integrals which (depending on the specific

system model) can be much more complicated than those
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required by the multiple model method.

We begin the development by letting V be a regular

space-time point process

~~V: [to, t)XQ-[t o,t)XRm

which satisfies Theorem III-1. Let (0,B,P(-;ws)) be a
s

probability space as defined in Chapter III and let

(sAs,PS) be a probability space defined as the cross

product of two individual probability spaces

s Sl S

where QS2 is as defined in Chapter III (equation 99) and

models the randomness of the noise process and Qs  models

the randomness of the signal process. Let Ast be the

subsigma field of events generated for ts[to,t) •

For the beam pointing and tracking problem, we are

interested in estimating the process i(t;w;w s) given

observations of the point process V, that is, in generating
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S(t) A E{x(t;w;ws)IB } (A-i)

where the signal rate parameter is dependent on x(t) as

in equation 3.

We model the process of interest as the It6 diffusion

process

dx(t;w;w sl)=a(t;w;w s , )dt+b(t;w; s l )du(t;w s ) (A-2)
Si- ~ 11

where i is a k dimensional Wiener process and

"a,b, and -u are AstOBt measurable processes. This is a

more general model than that given in equation 4, and we

assume that a unique solution to equation A-2 exists.

For this It6 model, Fishman (Ref. 11) has shown the

following differential rule. For a proof, see reference

11:170-174.
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Theorem A-I, Generalized Ito Differential rule. Let

JC

dt(t;w;w S) = (t;');wS)dt+b(t;;U S )d(t;uS)

+P f(t W ; W s s)N(dt XdV;wu; US)(A3

y

In
YCY

where T,b, and i are as in equation A-2, and y is an m

dimensional Astt - measurable process which is left

continuous in t and continuous in . If i(t,c(t)) has

a continuous derivative in t and continuous partial

derivatives of second order in the components , " m

of for tc[to,T),TR m  then (w.p.1)

I
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dt(t,T(t)) - __ dt + < , (t) > dt

Vata

+ trace [bbT d dt + bdu(t) (A-4)

y

The angle brackets in equation A-4 denote the vector inner

product. * 1

In order to use this differential rule to obtain the

estimate x(t) of the process x(t), let X(t) be

defined as in equation A-2 and let
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t

to Y

r

+ f J n JTI w;s N(C1TXd7) (A-5)

where (t,r;w;w s) is the hazard function for the regular
A

space-time point process V and T= EfIB T We define

T(t) in the differential rule as
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x 1 (t)

* (A-6)

Xnt) J n(t)

With this definition for T(t) we can now write equation

A-3 as

d(t;ui;w ) = '(t;ww s)dt + b'(t;wA;w S)du(t;w S)

(A-7)

y
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* . where

a(t;w;w s

A
y'(t;w;w ) - ---- A-)

S
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i-

and where the arguments on the hazard functions have been

dropped for ease of notation.

For i = 1,2, ... ,n we define

Ii(t = xi(t)e (A-11)

and apply the differential rule, equation A-4, to obtain

n(t) n(t) [y [

d i(tT(t)) = ait-x (t)e [)d dt

kb te du (A-12)I ijte du()

j=l

n(t) ^
+ xi(t)e I.(-c)- N(dtXdt)

Y

From Fishman (Ref. 11:160) it can be shown that

4
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V ^ n(t)
xi(t) E{xi(t) Bt } = s{Xi(t)e

(A-13)

= Es{i (t,T(t))}

We can apply the Fubini Theorem to equation A-13 to obtain

dxi(t) = E s{di(t, (t))} (A14)

therefore, we can take the expectation of both sides of

equation A-12 to arrive at

dxi(t) = ai(t)dt- xi(t) dt

+ 
y

Y
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In vector form,. the differential representation of 3E(t) is

dx(t) a (t)dt- x(t )cp-(t)+Td

+I fJIx(t)O-x(t)O N(dtXdt) (A-16)

y

x(to) =Ef7(to)}

The conditional error covariance matrix

t E- A ( t) nAt T

(A-17)

-~)Tt x(t)x (t)

can be expressed in differential form (Ref. 11:178) as
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d t [ ax )+(x a - x a )+ b jdt

S+ fE O(-x)(K-x)T(P- ) Isti N(dt X d'L)

Y

Y

•E ( x)T( , -¢) x d7- (A-18)

Equations A-16 and A-18 give tihe differential

p• representation of the quantity to be estimated (directly)

and tile error covariance, respectively. We can now cast the

L- particle beam model in terms of equation A-2 to obtain the

direct estimator equations for this application.

As in Chapter III, the model for the process x(t) is

given by
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d (t;w;w) F (t)i(t;w;w s)dt + G(t)dii(t;Ws)

(A-19)

X(to) = to -t

and the hazard function for the observed point process is

(t,r;w;w s) = xs(t,r;w;w s) + Xn(t,i;w;w S) (A-20)

where the signal rate parameter is given by equation 103.

The noise rate parameter is left general in form; we only

require that the observed point process satisfy Theorem III-

1 (it is regular).

By comparing our particle beam problem model (equation

A-19) and the general It'd model (equation A-2), we can

express the It0 model terms as

2
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a9(t;w;w, ) F(t)x(t;w;w ) (21

b(t;w;w) S G(t) (-2

We can substitute equations A-21 and A-22 into equation

A-16 to obtain the differential expression for the direct
A

9'estimate of x(t) (for the particle beam model presented):

A A
dx(t) F(t)x(tj'dt

dt (A-23)

+ ~~ f JgeM .(t)^^_N(dt Xdl

* y
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=4

where

A(t) E x(t;w;ws)Ist (A-24)

A ElXs(tr;w;ws ) + An t r;;S2 (A25)

- 1 (A-26)
x(t)= E s(t;w;ws )(t,r;;ws) 18t

Conditional expected values of the form of equations

(A-23) through (A-26) are difficult to solve. One approach

is to assume a density for the quantity in question and then

solve for the moments (or a partial set of the moments)

(Ref. 27 Vol.II). The complexity of solving for

either directly or through the use of an assumed density

motivates the multiple model adaptive estimator approach

taken in Chapter II.

230



VITA

David E. Meer was born on 15 April 1949 in Iowa City,

Iowa. He attended the University of Iowa in Iowa City and

graduated with a B.S.E.E. in June, 1972. Upon graduation,

he received a commission in the USAF through AFROTC. Prior

to active duty, he was an Electronic Engineer for the

University of Iowa Physics Department on their Hell.os, IIMP,

and Ilawkeye satellites. After entering active duty, his

first assignment was to the Communications Electronics

Engineering School at Keesler AFB, Mississippi. Upon

completion, he served as Maintenance Supervisor for the

AN/FSS-7 Sea Launched Ballistic Missile Detection and

Warning K:.adar for Detatchment 4, 14th Missile Warning

Squadron, It. Laguna APS, California. In May 1975, he was

assigned to the 1961st Communications Group, Clark AB,

Republic of the Philippines. lie served as Tactical

Communications Engineer and head of the Mobile

Communications Division until being assigned to the School

of Engineering, Air Force Institute of Technology in June

1978. He received his M.S.E.E. from AFIT in December 1979

and entered the Ph.D. program at AFIT in January 1980.

Permanent address: 1305 Franklin

Iowa City, Iowa 52240

231


